Skip to main content

Advertisement

Log in

Differential role of the anterior and intralaminar/lateral thalamic nuclei in systems consolidation and reconsolidation

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The anterior thalamic nuclei (ATN) and the intralaminar/lateral thalamic nuclei (ILN/LT) play different roles in memory processes. The ATN are believed to be part of an extended hippocampal system, and the ILN/LT have strong connections with the medial prefrontal cortex. It was shown that the ILN/LT are involved in systems consolidation. However, whether they are necessary for memory retrieval as well remains unclear. We, therefore, used c-Fos immunohistochemistry and reversible inactivations to investigate the role of the ATN and ILN/LT in recent and remote contextual fear memory retrieval in rats. The results confirm a differential role of the ATN and ILN/LT in systems consolidation, showing the involvement of the ATN in recent but not remote memory retrieval. This study also pinpoints which specific nuclei are involved in retrieval: the anterodorsal nucleus for recent memories, and the lateral mediodorsal nucleus for remote memories. Lastly, we also show that the ATN are not involved in reconsolidation. Together, the results suggest that these nuclei provide critical feedback for successful memory retrieval and systems consolidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aggleton JP, Pearce JM (2001) Neural systems underlying episodic memory: insights from animal research. Philos Trans R Soc Lond B Biol Sci 356(1413):1467–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aggleton JP, Hunt PR, Nagle S, Neave N (1996) The effects of selective lesions within the anterior thalamic nuclei on spatial memory in the rat. Behav Brain Res 81(1–2):189–198

    Article  CAS  PubMed  Google Scholar 

  • Aggleton JP, O’Mara SM, Vann SD, Wright NF, Tsanov M, Erichsen JT (2010) Hippocampal–anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. Eur J Neurosci 31(12):2292–2307

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey KR, Mair RG (2005) Lesions of specific and nonspecific thalamic nuclei affect prefrontal cortex-dependent aspects of spatial working memory. Behav Neurosci 119(2):410–419

    Article  PubMed  Google Scholar 

  • Blanchard RJ, Blanchard DC (1969) Passive and active reactions to fear-eliciting stimuli. J Comp Physiol Psychol 68(1):129–135

    Article  CAS  PubMed  Google Scholar 

  • Byatt G, Dalrymple-Alford JC (1996) Both anteromedial and anteroventral thalamic lesions impair radial-maze learning in rats. Behav Neurosci 110(6):1335–1348

    Article  CAS  PubMed  Google Scholar 

  • Cassel J-C, Pereira de Vasconcelos A, Loureiro M, Cholvin T, Dalrymple-Alford JC, Vertes RP (2013) The reuniens and rhomboid nuclei: neuroanatomy, electrophysiological characteristics and behavioral implications. Prog Neurobiol 111:34–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Child ND, Benarroch EE (2013) Anterior nucleus of the thalamus: functional organization and clinical implications. Neurology 81(21):1869–1876

    Article  PubMed  Google Scholar 

  • Conejo NM, González-Pardo H, López M, Cantora R, Arias JL (2007) Induction of c-Fos expression in the mammillary bodies, anterior thalamus and dorsal hippocampus after fear conditioning. Brain Res Bull 74(1–3):172–177

    Article  CAS  PubMed  Google Scholar 

  • Dalrymple-Alford JC, Harland B, Loukavenko EA, Perry B, Mercer S, Collings DA, Ulrich K, Abraham WC, McNaughton N, Wolff M (2015) Anterior thalamic nuclei lesions and recovery of function: relevance to cognitive thalamus. Neurosci Biobehav Rev 54:145–160

    Article  PubMed  Google Scholar 

  • de Vasconcelos AP, Cassel J-C (2014) The nonspecific thalamus: A place in a wedding bed for making memories last? Neurosci Biobehav Rev 54:175–196. doi:10.1016/j.neubiorev.2014.10.021

  • Debiec J, LeDoux JE, Nader K (2002) Cellular and systems reconsolidation in the hippocampus. Neuron 36(3):527–538

    Article  CAS  PubMed  Google Scholar 

  • Delevich K, Tucciarone J, Huang ZJ, Li B (2015) The mediodorsal thalamus drives feedforward inhibition in the anterior cingulate cortex via parvalbumin interneurons. J Neurosci 35(14):5743–5753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudai Y (2012) The restless engram: consolidations. Never End Annu Rev Neurosci 35(1):227–247

    Article  CAS  PubMed  Google Scholar 

  • Floresco SB, Grace AA (2003) Gating of hippocampal-evoked activity in prefrontal cortical neurons by inputs from the mediodorsal thalamus and ventral tegmental area. J Neurosci 23(9):3930–3943

    CAS  PubMed  Google Scholar 

  • Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nat Rev Neurosci 6(2):119–130

    Article  CAS  PubMed  Google Scholar 

  • Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ (2004) The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304(5672):881–883

    Article  CAS  PubMed  Google Scholar 

  • Gafford GM, Parsons RG, Helmstetter FJ (2011) Consolidation and reconsolidation of contextual fear memory requires mammalian target of rapamycin-dependent translation in the dorsal hippocampus. Neuroscience 182:98–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibb SJ, Wolff M, Dalrymple-Alford JC (2006) Odour–place paired-associate learning and limbic thalamus: comparison of anterior, lateral and medial thalamic lesions. Behav Brain Res 172(1):155–168

    Article  PubMed  Google Scholar 

  • Gold JJ, Squire LR (2006) The anatomy of amnesia: neurohistological analysis of three new cases. Learn Mem 13(6):699–710

    Article  PubMed  PubMed Central  Google Scholar 

  • Groenewegen HJ, Galis-de Graaf Y, Smeets WJAJ (1999) Integration and segregation of limbic cortico-striatal loops at the thalamic level: an experimental tracing study in rats. J Chem Neuroanat 16(3):167–185

    Article  CAS  PubMed  Google Scholar 

  • Hall J, Thomas KL, Everitt BJ (2001) Cellular imaging of zif268 expression in the hippocampus and amygdala during contextual and cued fear memory retrieval: selective activation of hippocampal CA1 neurons during the recall of contextual memories. J Neurosci 21(6):2186–2193

    CAS  PubMed  Google Scholar 

  • Li XB, Inoue T, Nakagawa S, Koyama T (2004) Effect of mediodorsal thalamic nucleus lesion on contextual fear conditioning in rats. Brain Res 1008(2):261–272

    Article  CAS  PubMed  Google Scholar 

  • Lopez J, Wolff M, Lecourtier L, Cosquer B, Bontempi B, Dalrymple-Alford J, Cassel J-C (2009) The intralaminar thalamic nuclei contribute to remote spatial memory. J Neurosci 29(10):3302–3306

    Article  CAS  PubMed  Google Scholar 

  • Loureiro M, Cholvin T, Lopez J, Merienne N, Latreche A, Cosquer B, Geiger K, Kelche C, Cassel J-C, Pereira de Vasconcelos A (2012) The ventral midline thalamus (reuniens and rhomboid nuclei) contributes to the persistence of spatial memory in rats. J Neurosci 32(29):9947–9959

    Article  CAS  PubMed  Google Scholar 

  • Mair RG, Burk JA, Porter MC (1998) Lesions of the frontal cortex, hippocampus, and intralaminar thalamic nuclei have distinct effects on remembering in rats. Behav Neurosci 112(4):772–792

    Article  CAS  PubMed  Google Scholar 

  • Mair RG, Burk JA, Porter MC (2003) Impairment of radial maze delayed nonmatching after lesions of anterior thalamus and parahippocampal cortex. Behav Neurosci 117(3):596–605

    Article  PubMed  Google Scholar 

  • Marchand AA, Coutureau FE, Wolff M (2014) A role for anterior thalamic nuclei in contextual fear memory. Brain Struct Funct 219(5):1575–1586. doi:10.1007/s00429-013-0586-7

  • Méndez-Couz M, Conejo N, González-Pardo H, Arias J (2015) Functional interactions between dentate gyrus, striatum and anterior thalamic nuclei on spatial memory retrieval. Brain Res 1605:59–69

    Article  PubMed  Google Scholar 

  • Mitchell AS (2015) The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making. Neurosci Biobehav Rev 54:76–88

    Article  PubMed  Google Scholar 

  • Mitchell AS, Chakraborty S (2013) What does the mediodorsal thalamus do? Front Syst Neurosci 7:37. doi:10.3389/fnsys.2013.00037

  • Mitchell AS, Dalrymple-Alford JC (2005) Dissociable memory effects after medial thalamus lesions in the rat. Eur J Neurosci 22(4):973–985

    Article  PubMed  Google Scholar 

  • Mitchell AS, Dalrymple-Alford JC (2006) Lateral and anterior thalamic lesions impair independent memory systems. Learn Mem 13(3):388–396

    Article  PubMed  PubMed Central  Google Scholar 

  • Montaron MF, Deniau JM, Menetrey A, Glowinski J, Thierry AM (1996) Prefrontal cortex inputs of the nucleus accumbens-nigro-thalamic circuit. Neuroscience 71(2):371–382

    Article  CAS  PubMed  Google Scholar 

  • Nader K, Hardt O (2009) A single standard for memory: the case for reconsolidation. Nat Rev Neurosci 10(3):224–234

    Article  CAS  PubMed  Google Scholar 

  • Nader K, Schafe GE, Le Doux JE (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406(6797):722–726

    Article  CAS  PubMed  Google Scholar 

  • Jankowski MM, Ronnqvist KC, Tsanov M, Vann SD, Wright NF, Erichsen JT, Aggleton JP, O'Mara SM (2013) The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation. Front Syst Neurosci 7:45. doi:10.3389/fnsys.2013.00045

  • Pergola G, Suchan B (2013) Associative learning beyond the medial temporal lobe: many actors on the memory stage. Front Behav Neurosci 7:162. doi:10.3389/fnbeh.2013.00162

  • Przybyslawski J, Roullet P, Sara SJ (1999) Attenuation of emotional and nonemotional memories after their reactivation: role of beta adrenergic receptors. J Neurosci 19(15):6623–6628

    CAS  PubMed  Google Scholar 

  • Saalmann YB (2014) Intralaminar and medial thalamic influence on cortical synchrony, information transmission and cognition. Front Syst Neurosci 8:83. doi:10.3389/fnsys.2014.00083

  • Sara SJ (2000) Retrieval and reconsolidation: toward a neurobiology of remembering. Learn Mem 7(2):73–84

    Article  CAS  PubMed  Google Scholar 

  • Staudigl T, Zaehle T, Voges J, Hanslmayr S, Esslinger C, Hinrichs H, Schmitt FC, Heinze H-J, Richardson-Klavehn A (2012) Memory signals from the thalamus: early thalamocortical phase synchronization entrains gamma oscillations during long-term memory retrieval. Neuropsychologia 50(14):3519–3527

    Article  PubMed  Google Scholar 

  • Taube J (1995) Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. J Neurosci 15(1):70–86

    CAS  PubMed  Google Scholar 

  • Thierry AM, Gioanni Y, Degenetais E, Glowinski J (2000) Hippocampo-prefrontal cortex pathway: anatomical and electrophysiological characteristics. Hippocampus 10(4):411–419

    Article  CAS  PubMed  Google Scholar 

  • Van Der Werf YD, Jolles J, Witter MP, Uylings HBM (2003) Contributions of thalamic nuclei to declarative memory functioning. Cortex 39(4–5):1047–1062

    PubMed  Google Scholar 

  • van Groen T, Kadish I, Michael Wyss J (2002) Role of the anterodorsal and anteroventral nuclei of the thalamus in spatial memory in the rat. Behav Brain Res 132(1):19–28

    Article  PubMed  Google Scholar 

  • Varela C, Kumar S, Yang JY, Wilson MA (2013) Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens. Brain Struct Funct 219(3):911–929. doi:10.1007/s00429-013-0543-5

  • Winocur G, Moscovitch M, Bontempi B (2010) Memory formation and long-term retention in humans and animals: convergence towards a transformation account of hippocampal–neocortical interactions. Neuropsychologia 48(8):2339–2356

    Article  PubMed  Google Scholar 

  • Wolff M, Gibb SJ, Dalrymple-Alford JC (2006) Beyond spatial memory: the anterior thalamus and memory for the temporal order of a sequence of odor cues. J Neurosci 26(11):2907–2913

    Article  CAS  PubMed  Google Scholar 

  • Wolff M, Gibb SJ, Cassel J-C, Dalrymple-Alford JC (2008) Anterior but not intralaminar thalamic nuclei support allocentric spatial memory. Neurobiol Learn Mem 90(1):71–80

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to S. Bors and G. Penny for their assistance in animal care. This research was supported by the FRM (SPE20100518356) and NSERC (RGPIN249880-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joëlle Lopez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, J., Gamache, K., Milo, C. et al. Differential role of the anterior and intralaminar/lateral thalamic nuclei in systems consolidation and reconsolidation. Brain Struct Funct 223, 63–76 (2018). https://doi.org/10.1007/s00429-017-1475-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-017-1475-2

Keywords

Navigation