Skip to main content
Log in

Intracerebral evidence of rhythm transform in the human auditory cortex

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Musical entrainment is shared by all human cultures and the perception of a periodic beat is a cornerstone of this entrainment behavior. Here, we investigated whether beat perception might have its roots in the earliest stages of auditory cortical processing. Local field potentials were recorded from 8 patients implanted with depth-electrodes in Heschl’s gyrus and the planum temporale (55 recording sites in total), usually considered as human primary and secondary auditory cortices. Using a frequency-tagging approach, we show that both low-frequency (<30 Hz) and high-frequency (>30 Hz) neural activities in these structures faithfully track auditory rhythms through frequency-locking to the rhythm envelope. A selective gain in amplitude of the response frequency-locked to the beat frequency was observed for the low-frequency activities but not for the high-frequency activities, and was sharper in the planum temporale, especially for the more challenging syncopated rhythm. Hence, this gain process is not systematic in all activities produced in these areas and depends on the complexity of the rhythmic input. Moreover, this gain was disrupted when the rhythm was presented at fast speed, revealing low-pass response properties which could account for the propensity to perceive a beat only within the musical tempo range. Together, these observations show that, even though part of these neural transforms of rhythms could already take place in subcortical auditory processes, the earliest auditory cortical processes shape the neural representation of rhythmic inputs in favor of the emergence of a periodic beat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bancaud J, Talairach J (1973) Methodology of stereo EEG exploration and surgical intervention in epilepsy. Rev Otoneuroophtalmol 45(4):315–328

    CAS  PubMed  Google Scholar 

  • Brosch M, Budinger E, Scheich H (2002) Stimulus-related gamma oscillations in primate auditory cortex. J Neurophysiol 87:2715–2725

    PubMed  Google Scholar 

  • Brugge JF, Nourski KV, Oya H, Reale RA, Kawasaki H, Steinschneider M, Howard MA 3rd (2009) Coding of repetitive transients by auditory cortex on Heschl’s gyrus. J Neurophysiol 102(4):2358–2374

    Article  PubMed  PubMed Central  Google Scholar 

  • Chemin B, Mouraux A, Nozaradan S (2014) Body movement selectively shapes the neural representation of musical rhythm. Psychol Sci 25(12):2147–2159

    Article  PubMed  Google Scholar 

  • Cirelli LK, Spinelli C, Nozaradan S, Trainor LJ (2016) Measuring neural entrainment to beat and meter in infants: effects of music background. Front Neurosci 10:229. doi:10.3389/fnins.2016.00229

    Article  PubMed  PubMed Central  Google Scholar 

  • Da Costa S, van der Zwaag W, Marques JP, Frackowiak RS, Clarke S, Saenz M (2011) Human primary auditory cortex follows the shape of Heschl’s gyrus. J Neurosci 31(40):14067–14075

    Article  PubMed  Google Scholar 

  • Drake C, Botte MC (1993) Tempo sensitivity in auditory sequences: evidence for a multiple-look model. Percept Psychophys 54(3):277–286

    Article  CAS  PubMed  Google Scholar 

  • Drullman R, Festen JM, Plomp R (1994a) Effect of reducing slow temporal modulations on speech reception. J Acoust Soc Am 95:2670–2680

    Article  CAS  PubMed  Google Scholar 

  • Drullman R, Festen JM, Plomp R (1994b) Effect of temporal envelope smearing on speech reception. J Acoust Soc Am 95:1053–1064

    Article  CAS  PubMed  Google Scholar 

  • Edwards E, Chang EF (2013) Syllabic (~2–5 Hz) and fluctuation (~1–10 Hz) ranges in speech and auditory processing. Hear Res 305:113–134. doi:10.1016/j.heares.2013.08.017

    Article  PubMed  Google Scholar 

  • Eggermont JJ (2001) Between sound and perception: reviewing the search for a neural code. Hear Res 157(1–2):1–42

    Article  CAS  PubMed  Google Scholar 

  • Erulkar SD, Butler RA, Gerstein GL (1968) Excitation and inhibition in cochlear nucleus. II. Frequency modulated tones. J Neurophysiol 31:537–548

    CAS  PubMed  Google Scholar 

  • Fernald RD, Gerstein GL (1972) Response of cat cochlear nucleus neurons to frequency and amplitude modulated tones. Brain Res 45:417–435

    Article  CAS  PubMed  Google Scholar 

  • Fraisse P (1967) Psychologie du temps. Presses universitaires de France, France

    Google Scholar 

  • Friedman-Hill S, Maldonado PE, Gray CM (2000) Dynamics of striate cortical activity in the alert macaque: I. Incidence and stimulus dependence of gammaband neuronal oscillations. Cereb Cortex 10:1105–1116

    Article  CAS  PubMed  Google Scholar 

  • Frien A, Eckhorn R, Bauer R, Woelbern T, Gabriel A (2000) Fast oscillations display sharper orientation tuning than slower components of the same recordings in striate cortex of the awake monkey. Eur J Neurosci 12:1453–1465

    Article  CAS  PubMed  Google Scholar 

  • Fujioka T, Trainor LJ, Large EW, Ross B (2012) Internalized timing of isochronous sounds is represented in neuromagnetic β oscillations. J Neurosci 32(5):1791–1802

    Article  CAS  PubMed  Google Scholar 

  • Gourévitch B, Le Bouquin Jeannès R, Faucon G, Liégeois-Chauvel C (2011) Temporal envelope processing in the human auditory cortex: response and interconnections of auditory cortical areas. Hear Res 237(1–2):1–18

    Google Scholar 

  • Grahn JA (2012) Neural mechanisms of rhythm perception: current findings and future perspectives. Top Cogn Sci 4(4):585–606

    Article  PubMed  Google Scholar 

  • Griffiths TD, Warren JD (2002) The planum temporale as a computational hub. Trends Neurosci 25(7):348–353

    Article  CAS  PubMed  Google Scholar 

  • Hove MJ, Risen JL (2009) It’s all in the timing: interpersonal synchrony increases affiliation. Soc Cogn 27:949–961

    Article  Google Scholar 

  • Hove MJ, Marie C, Bruce IC, Trainor LJ (2014) Superior time perception for lower musical pitch explains why bass-ranged instruments lay down musical rhythms. Proc Natl Acad Sci USA 111(28):10383–10388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonas J, Jacques C, Liu-Shuang J, Brissart H, Colnat-Coulbois S, Maillard L, Rossion B (2016) A face-selective ventral occipito-temporal map of the human brain with intracerebral potentials. Proc Natl Acad Sci USA 113(28):E4088–E4097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84(2):541–577 (Review)

    Article  CAS  PubMed  Google Scholar 

  • Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320(5872):110–113

    Article  CAS  PubMed  Google Scholar 

  • Large EW (2008) Resonating to musical rhythm: theory and experiment. In: Grondin Simon (ed) The psychology of time. Emerald, West Yorkshire

    Google Scholar 

  • Large EW (2010) Neurodynamics of music. In: Riess Jones M, Fay RR, Popper AN (eds) Springer handbook of auditory research, vol 36., Music perceptionSpringer, New York, pp 201–231

    Google Scholar 

  • Large EW, Herrera JA, Velasco MJ (2015) Neural networks for beat perception in musical rhythm. Front Syst Neurosci 25(9):159. doi:10.3389/fnsys.2015.00159

    Google Scholar 

  • Leonard MK, Bouchard KE, Tang C, Chang EF (2015) Dynamic encoding of speech sequence probability in human temporal cortex. J Neurosci 35(18):7203–7214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liégeois-Chauvel C, Lorenzi C, Trébuchon A, Régis J, Chauvel P (2004) Temporal envelope processing in the human left and right auditory cortices. Cereb Cortex 14(7):731–740

    Article  PubMed  Google Scholar 

  • London J (2004) Hearing in time: psychological aspects of musical meter. Oxford UP, London

    Book  Google Scholar 

  • Malone BJ, Schreiner CE (2010) Time-varying sounds: amplitude envelope modulations. In: Rees A, Palmer AR (eds) The auditory brain. Oxford University Press, Oxford, New York, pp 125–148

    Google Scholar 

  • McAuley JD (2010) Tempo and rhythm. In Jones MR et al. (eds.) Music Perception, Springer Handbook of Auditory Research 36, USA

  • Merchant H, Honing H (2014) Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis. Front Neurosci 7:274. doi:10.3389/fnins.2013.00274

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller KJ, Foster BL, Honey CJ (2012) Does rhythmic entrainment represent a generalized mechanism for organizing computation in the brain? Front Comput Neurosci 6:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Møller AR (1972) Coding of amplitude and frequency modulated sounds in the cochlear nucleus of the rat. Acta Physiol Scand 86:223–238

    Article  PubMed  Google Scholar 

  • Mouraux A, Iannetti GD, Colon E, Nozaradan S, Legrain V, Plaghki L (2011) Nociceptive steady-state evoked potentials elicited by rapid periodic thermal stimulation of cutaneous nociceptors. J Neurosci 31:6079–6087

    Article  CAS  PubMed  Google Scholar 

  • Norcia AM, Appelbaum LG, Ales JM, Cottereau BR, Rossion B (2015) The steady-state visual evoked potential in vision research: a review. J Vis 15(6):4

    Article  PubMed  PubMed Central  Google Scholar 

  • Nourski KV, Reale RA, Oya H, Kawasaki H, Kovach CK, Chen H, Howard MA 3rd, Brugge JF (2009) Temporal envelope of time-compressed speech represented in the human auditory cortex. J Neurosci 29(49):15564–15574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nourski KV, Steinschneider M, Rhone AE, Oya H, Kawasaki H, Howard MA 3rd, McMurray B (2015) Sound identification in human auditory cortex: differential contribution of local field potentials and high gamma power as revealed by direct intracranial recordings. Brain Lang 148:37–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Nozaradan S (2014) Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging. Philos Trans B 369(1658):20130393. doi:10.1098/rstb.2013.0393

    Article  Google Scholar 

  • Nozaradan S, Peretz I, Missal M, Mouraux A (2011) Tagging the neuronal entrainment to beat and meter. J Neurosci 31:10234–10240

    Article  CAS  PubMed  Google Scholar 

  • Nozaradan S, Peretz I, Mouraux A (2012a) Steady-state evoked potentials as an index of multisensory temporal binding. Neuroimage 60(1):21–28

    Article  PubMed  Google Scholar 

  • Nozaradan S, Peretz I, Mouraux A (2012b) Selective neuronal entrainment to the beat and meter embedded in a musical rhythm. J Neurosci 32(49):17572–17581

    Article  CAS  PubMed  Google Scholar 

  • Nozaradan S, Zerouali Y, Peretz I, Mouraux A (2015) Capturing with EEG the neural entrainment and coupling underlying sensorimotor synchronization to the beat. Cereb Cortex 25(3):736–747

    Article  PubMed  Google Scholar 

  • Nozaradan S, Peretz I, Keller PE (2016a) Individual differences in rhythmic cortical entrainment correlate with predictive behavior in sensorimotor synchronization. Sci Rep 6:20612. doi:10.1038/srep20612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozaradan S, Schönwiesner M, Caron-Desrochers L, Lehmann A (2016b) Enhanced brainstem and cortical encoding of sound during synchronized movement. Neuroimage 16:30322–30326

    Google Scholar 

  • Pantev C, Hoke M, Lehnertz K, Lütkenhöner B, Anogianakis G, Wittkowski W (1988) Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroencephalogr Clin Neurophysiol 69(2):160–170

    Article  CAS  PubMed  Google Scholar 

  • Pasley BN, David SV, Mesgarani N, Flinker A, Shamma SA, Crone NE, Knight RT, Chang EF (2012) Reconstructing speech from human auditory cortex. PLoS Biol 10:e1001251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel AD, Iversen JR (2014) The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP) hypothesis. Front Psychol 8:57. doi:10.3389/fnsys.2014.00057

    Google Scholar 

  • Phillips-Silver J, Keller PE (2012) Searching for roots of entrainment and joint action in early musical interactions. Front Hum Neurosci 6:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips-Silver J, Trainor LJ (2007) Hearing what the body feels: auditory encoding of rhythmic movement. Cognition 105(3):533–546

    Article  PubMed  Google Scholar 

  • Picton TW, Skinner CR, Champagne SC, Kellett AJ, Maiste AC (1987) Potentials evoked by the sinusoidal modulation of the amplitude or frequency of a tone. J Acoust Soc Am 82:165–178

    Article  CAS  PubMed  Google Scholar 

  • Povel DJ, Essens PJ (1985) Perception of temporal patterns. Music Percept 2:411–441

    Article  Google Scholar 

  • Rajendran VG, Harper NS, Willmore BD, Schnupp JWH (2015) A biologically plausible model of beat detection in complex rhythmic sounds. In: Proceedings of the rhythm perception and production workshop, Amsterdam

  • Regan DM (1989) Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New York

    Google Scholar 

  • Repp BH (2005) Sensorimotor synchronization: a review of the tapping literature. Psychon Bull Rev 12(6):969–992

    Article  PubMed  Google Scholar 

  • Repp BH, Su YH (2013) Sensorimotor synchronization: a review of recent research (2006–2012). Psychon Bull Rev 20(3):403–452. doi:10.3758/s13423-012-0371-2

    Article  PubMed  Google Scholar 

  • Rossion B (2014) Understanding individual face discrimination by means of fast periodic visual stimulation. Exp Brain Res 232(6):1599–1621

    Article  PubMed  Google Scholar 

  • Schroeder CE, Lakatos P (2009) Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci 32(1):9–18

    Article  CAS  PubMed  Google Scholar 

  • Shannon RV, Zeng F-G, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303–304

    Article  CAS  PubMed  Google Scholar 

  • Smith ZM, Delgutte B, Oxenham AJ (2002) Chimaeric sounds reveal dichotomies in auditory perception. Nature 416(6876):87–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinschneider M, Fishman YI, Arezzo JC (2008) Spectrotemporal analysis of evoked and induced electroencephalographic responses in primary auditory cortex (A1) of the awake monkey. Cereb Cortex 18(3):610–625

    Article  PubMed  Google Scholar 

  • Steinschneider M, Nourski KV, Kawasaki H, Oya H, Brugge JF, Howard MA 3rd (2011) Intracranial study of speech-elicited activity on the human posterolateral superior temporal gyrus. Cereb Cortex 21(10):2332–2347

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinschneider M, Nourski KV, Fishman YI (2013) Representation of speech in human auditory cortex: is it special? Hear Res 305:57–73

    Article  PubMed  Google Scholar 

  • Toiviainen P, Luck G, Thompson M (2010) Embodied meter: hierarchical eigenmodes in music-induced movement. Music Percept 28:59–70

    Article  Google Scholar 

  • Tranchant P, Vuvan D (2015) Current conceptual challenges in the study of rhythm processing deficits. Front Neurosci 9:197. doi:10.3389/fnins.2015.00197

    Article  PubMed  PubMed Central  Google Scholar 

  • van Noorden L, Moelants D (1999) Resonance in the perception of musical pulse. J New Music Res 28:43–66

    Article  Google Scholar 

  • Velasco MJ, Large EW (2011) Pulse detection in syncopating rhythms using neural oscillators. In: Proceedings of the 12th annual conference of the international society for music information retrieval, pp 186–190

  • Wang Y, Ding N, Ahmar N, Xiang J, Poeppel D, Simon JZ (2012) Sensitivity to temporal modulation rate and spectral bandwidth in the human auditory system: MEG evidence. J Neurophysiol 107(8):2033–2041. doi:10.1152/jn.00310.2011

    Article  PubMed  Google Scholar 

  • Zatorre RJ, Chen JL, Penhune VB (2007) When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci 8(7):547–558

    Article  CAS  PubMed  Google Scholar 

  • Zion Golumbic EM, Ding N, Bickel S, Lakatos P, Schevon CA, McKhann GM, Goodman RR, Emerson R, Mehta AD, Simon JZ, Poeppel D, Schroeder CE (2013) Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party”. Neuron 77(5):980–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.N. is supported by an Australian Research Council (ARC) DECRA DE160101064 and by the Belgian National Fund for Scientific Research (F.R.S.-FNRS) FRSM 3.4558.12 Convention Grant (to Pr. A. Mouraux). J.J. and B.R. are supported by the Belgian National Fund for Scientific Research (F.R.S.-FNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Nozaradan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nozaradan, S., Mouraux, A., Jonas, J. et al. Intracerebral evidence of rhythm transform in the human auditory cortex. Brain Struct Funct 222, 2389–2404 (2017). https://doi.org/10.1007/s00429-016-1348-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1348-0

Keywords

Navigation