Skip to main content
Log in

Path ensembles and a tradeoff between communication efficiency and resilience in the human connectome

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Computational analysis of communication efficiency of brain networks often relies on graph-theoretic measures based on the shortest paths between network nodes. Here, we explore a communication scheme that relaxes the assumption that information travels exclusively through optimally short paths. The scheme assumes that communication between a pair of brain regions may take place through a path ensemble comprising the k-shortest paths between those regions. To explore this approach, we map path ensembles in a set of anatomical brain networks derived from diffusion imaging and tractography. We show that while considering optimally short paths excludes a significant fraction of network connections from participating in communication, considering k-shortest path ensembles allows all connections in the network to contribute. Path ensembles enable us to assess the resilience of communication pathways between brain regions, by measuring the number of alternative, disjoint paths within the ensemble, and to compare generalized measures of path length and betweenness centrality to those that result when considering only the single shortest path between node pairs. Furthermore, we find a significant correlation, indicative of a trade-off, between communication efficiency and resilience of communication pathways in structural brain networks. Finally, we use k-shortest path ensembles to demonstrate hemispherical lateralization of efficiency and resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelnour F, Voss HU, Raj A (2014) Network diffusion accurately models the relationship between structural and functional brain connectivity networks. Neuroimage 90:335–347

    Article  PubMed  Google Scholar 

  • Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3(2):e17–e17

    Article  PubMed  PubMed Central  Google Scholar 

  • Achard S, Salvador R, Whitcher B, Suckling J, Bullmore ED (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Avena-Koenigsberger A, Goñi J, Betzel RF, van den Heuvel MP, Griffa A, Hagmann P, Sporns O (2014) Using Pareto optimality to explore the topology and dynamics of the human connectome. Philos Trans Royal Soc B Biol Sci 369(1653):20130530

    Article  Google Scholar 

  • Barthélemy M (2011) Spatial networks. Phys Rep 499(1):1–101

    Article  Google Scholar 

  • Bassett DS, Bullmore ED (2006) Small-world brain networks. Neuroscientist 12(6):512–523

    Article  PubMed  Google Scholar 

  • Bassett DS, Greenfield DL, Meyer-Lindenberg A, Weinberger DR, Moore SW, Bullmore ET (2010) Efficient physical embedding of topologically complex information processing networks in brains and computer circuits. PLoS Comput Biol 6(4):e1000748

    Article  PubMed  PubMed Central  Google Scholar 

  • Betzel RF, Byrge L, He Y, Goñi J, Zuo XN, Sporns O (2014) Changes in structural and functional connectivity among resting-state networks across the human lifespan. NeuroImage 102:345–357

    Article  PubMed  Google Scholar 

  • Betzel RF, Avena-Koenigsberger A, Goñi J, He Y, de Reus MA, Griffa A, van den Heuvel M (2016) Generative models of the human connectome. Neuroimage 124:1054–1064

    Article  PubMed  PubMed Central  Google Scholar 

  • Biggs N, Lloyd EK, Wilson RJ (1976) Graph theory 1736–1936. Oxford University Press, Oxford

    Google Scholar 

  • Boguña M, Krioukov D, Claffy KC (2009) Navigability of complex networks. Nat Phys 5(1):74–80

    Article  Google Scholar 

  • Borgatti SP (2005) Centrality and network flow. Soc Netw 27(1):55–71

    Article  Google Scholar 

  • Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349

    CAS  PubMed  Google Scholar 

  • Buzsáki G, Mizuseki K (2014) The log-dynamic brain: how skewed distributions affect network operations. Nat Rev Neurosci 15(4):264–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Cammoun L, Gigandet X, Meskaldji D, Thiran JP, Sporns O, Do KQ, Maeder P, Meuli R, Hagmann P (2012) Mapping the human connectome at multiple scales with diffusion spectrum MRI. J Neurosci Methods 203:386–397

    Article  PubMed  Google Scholar 

  • Chung FR (1997) Spectral graph theory, vol 92. American Mathematical Society

  • Collin G, Sporns O, Mandl RC, van den Heuvel MP (2014) Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cereb Cortex 24(9):2258–2267

    Article  PubMed  Google Scholar 

  • Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms, vol 6. MIT press, Cambridge

  • da Fontoura Costa L, Travieso G (2007) Exploring complex networks through random walks. Phys Rev E 75(1):016102

    Article  Google Scholar 

  • Daducci A, Gerhard S, Griffa A, Lemkaddem A, Cammoun L, Gigandet X, Meuli R, Hagmann P, Thiran JP (2012) The connectome mapper: an open-source processing pipeline to map connectomes with MRI. PLoS One 7:e48121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Albert MS (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980

    Article  PubMed  Google Scholar 

  • Estrada E, Hatano N (2008) Communicability in complex networks. Phys Rev E 77(3):036111

    Article  Google Scholar 

  • Ford LR Jr, Fulkerson DR (1987) Maximal flow through a network. Classic papers in combinatorics. Birkhäuser, Boston, pp 243–248

    Google Scholar 

  • Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36

    Article  PubMed  Google Scholar 

  • Galán RF (2008) On how network architecture determines the dominant patterns of spontaneous neural activity. PLoS One 3(5):e2148

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallos LK, Makse HA, Sigman M (2012) A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks. Proc Natl Acad Sci 109(8):2825–2830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong G, Rosa-Neto P, Carbonell F, Chen ZJ, He Y, Evans AC (2009) Age-and gender-related differences in the cortical anatomical network. J Neurosci 29(50):15684–15693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goñi J, Avena-Koenigsberger A, de Mendizabal NV, van den Heuvel M, Betzel R, Sporns O (2013) Exploring the morphospace of communication efficiency in complex networks. PLoS One 8(3):e58070

    Article  PubMed  PubMed Central  Google Scholar 

  • Goñi J, van den Heuvel MP, Avena-Koenigsberger A, de Mendizabal NV, Betzel RF, Griffa A, Sporns O (2014) Resting-brain functional connectivity predicted by analytic measures of network communication. Proc Nat Acad Sci 111(2):833–838

    Article  PubMed  Google Scholar 

  • Gotts SJ, Jo HJ, Wallace GL, Saad ZS, Cox RW, Martin A (2013) Two distinct forms of functional lateralization in the human brain. Proc Natl Acad Sci 110(36):E3435–E3444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grinstead CM, Snell JL (2012) Introduction to probability. American Mathematical Society

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159

    Article  PubMed  PubMed Central  Google Scholar 

  • Hermundstad AM, Bassett DS, Brown KS, Aminoff EM, Clewett D, Freeman S, Frithsen A, Johnson A, Tipper CM, Miller MB, Grafton ST, Carlson JM (2013) Structural foundations of resting-state and task-based functional connectivity in the human brain. Proc Natl Acad Sci USA 110(15):6169–6174

    Article  PubMed  PubMed Central  Google Scholar 

  • Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci 106(6):2035–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iturria-Medina Y, Fernández AP, Morris DM, Canales-Rodríguez EJ, Haroon HA, Pentón LG, Melie-García L (2011) Brain hemispheric structural efficiency and interconnectivity rightward asymmetry in human and nonhuman primates. Cereb Cortex 21(1):56–67

    Article  PubMed  Google Scholar 

  • Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254

    Article  PubMed  Google Scholar 

  • Joyce KE, Laurienti PJ, Burdette JH, Hayasaka S (2010) A new measure of centrality for brain networks. PLoS One 5(8):e12200

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaiser M, Hilgetag CC (2006) Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput Biol 2(7):e95–e95

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaiser M, Martin R, Andras P, Young MP (2007) Simulation of robustness against lesions of cortical networks. Eur J Neurosci 25(10):3185–3192

    Article  PubMed  Google Scholar 

  • Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87(19):198701

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Stufflebeam SM, Sepulcre J, Hedden T, Buckner RL (2009) Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors. Proc Natl Acad Sci USA 106(48):20499–20503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30(28):9477–9487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markov NT, Ercsey-Ravasz MM, Gomes AR, Lamy C, Magrou L, Vezoli J, Sallet J (2012) A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb Cortex. bhs270

  • Masel J, Trotter MV (2010) Robustness and evolvability. Trends Genet 26(9):406–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGhee GR (2006) The geometry of evolution: adaptive landscapes and theoretical morphospaces. Cambridge University Press, England

    Book  Google Scholar 

  • Mišić B, Sporns O, McIntosh AR (2014) Communication efficiency and congestion of signal traffic in large-scale brain networks. PLoS Comput Biol 10(1):e1003427

    Article  PubMed  PubMed Central  Google Scholar 

  • Mišić B, Betzel RF, Nematzadeh A, Goñi J, Griffa A, Hagmann P, Sporns O (2015) Cooperative and competitive spreading dynamics on the human connectome. Neuron 86(6):1518–1529

    Article  PubMed  Google Scholar 

  • Newman ME (2005) A measure of betweenness centrality based on random walks. Soc Netw 27(1):39–54

    Article  Google Scholar 

  • Park HJ, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342(6158):1238411

    Article  PubMed  Google Scholar 

  • Passingham RE, Stephan KE, Kötter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3(8):606–616

    Article  CAS  PubMed  Google Scholar 

  • Powell JL, Kemp GJ, García-Finaña M (2012) Association between language and spatial laterality and cognitive ability: an fMRI study. Neuroimage 59(2):1818–1829

    Article  PubMed  Google Scholar 

  • Rosvall M, Grönlund A, Minnhagen P, Sneppen K (2005) Searchability of networks. Phys Rev E 72(4):046117

    Article  CAS  Google Scholar 

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069

    Article  PubMed  Google Scholar 

  • Seghier ML, Josse G, Leff AP, Price CJ (2011) Lateralization is predicted by reduced coupling from the left to right prefrontal cortex during semantic decisions on written words. Cereb Cortex 21(7):1519–1531

    Article  PubMed  Google Scholar 

  • Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, Alon U (2012) Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. Science 336(6085):1157–1160

    Article  CAS  PubMed  Google Scholar 

  • Simas T, Rocha LM (2015) Distance closures on complex networks. Netw Sci 3(02):227–268

    Article  Google Scholar 

  • Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci 106(31):13040–13045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sporns O (2013) Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol 23(2):162–171

    Article  CAS  PubMed  Google Scholar 

  • Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42

    Article  PubMed  PubMed Central  Google Scholar 

  • Sporns O, Honey CJ, Kötter R (2007) Identification and classification of hubs in brain networks. PLoS One 2(10):e1049–e1049

    Article  PubMed  PubMed Central  Google Scholar 

  • Stern Y, Habeck C, Moeller J, Scarmeas N, Anderson KE, Hilton HJ, van Heertum R (2005) Brain networks associated with cognitive reserve in healthy young and old adults. Cereb Cortex 15(4):394–402

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas C, Frank QY, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, Pierpaoli C (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci 111(46):16574–16579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tombu MN, Asplund CL, Dux PE, Godwin D, Martin JW, Marois R (2011) A unified attentional bottleneck in the human brain. Proc Natl Acad Sci 108(33):13426–13431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci 91(11):5033–5037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31(44):15775–15786

    Article  PubMed  Google Scholar 

  • van den Heuvel MP, Stam CJ, Kahn RS, Pol HEH (2009) Efficiency of functional brain networks and intellectual performance. J Neurosci 29(23):7619–7624

    Article  PubMed  Google Scholar 

  • van den Heuvel MP, Kahn RS, Goñi J, Sporns O (2012) High-cost, high-capacity backbone for global brain communication. Proc Natl Acad Sci 109(28):11372–11377

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T (2012) Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb Cortex 22(10):2241–2262

    Article  PubMed  Google Scholar 

  • Vértes PE, Alexander-Bloch AF, Gogtay N, Giedd JN, Rapoport JL, Bullmore ET (2012) Simple models of human brain functional networks. Proc Natl Acad Sci 109(15):5868–5873

    Article  PubMed  PubMed Central  Google Scholar 

  • Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WYI, Dai G, Pandya DN, Hagmann P, D’Arceuil H, de Crespigny AJ (2008) Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41:1267–1277

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Gong G, Wang J, Wang D, Liu D, Zhu C, He Y (2011) Sex-and brain size–related small-world structural cortical networks in young adults: a DTI tractography study. Cereb Cortex 21(2):449–458

    Article  PubMed  Google Scholar 

  • Yen JY (1971) Finding the k shortest loopless paths in a network. Manage Sci 17(11):712–716

    Article  Google Scholar 

  • Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125–1165

    Article  PubMed  Google Scholar 

  • Yoo SW, Han CE, Shin JS, Seo SW, Na DL, Kaiser M, Seong JK (2015) A network flow-based analysis of cognitive reserve in normal ageing and Alzheimer’s Disease. Scientific reports 5:10057

    Article  Google Scholar 

  • Zuo XN, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O, Milham MP (2012) Network centrality in the human functional connectome. Cereb Cortex 22(8):1862–1875

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joaquín Goñi or Olaf Sporns.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments of comparable ethical standards.

Funding statement

B.M. was supported by a Natural Science and Engineering Research Council of Canada postdoctoral fellowship. A.G. and P.H. were supported by the Swiss National Science Foundation (#310030-156874, NCCR-Synapsy 51AU40_125759), the Center for Biomedical Imaging (CIBM) of the Geneva-Lausanne Universities and EPFL, Leenaards Foundation, and Louis-Jeantet Foundation. J.G. was supported by the National Institute of Health (1R01 MH108467-01). O.S. was supported by the J.S. McDonnell Foundation (220020387), the National Science Foundation (1212778), and the National Institutes of Health (R01 AT009036-01).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 975 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avena-Koenigsberger, A., Mišić, B., Hawkins, R.X.D. et al. Path ensembles and a tradeoff between communication efficiency and resilience in the human connectome. Brain Struct Funct 222, 603–618 (2017). https://doi.org/10.1007/s00429-016-1238-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1238-5

Keywords

Navigation