Skip to main content
Log in

Deep sleep divides the cortex into opposite modes of anatomical–functional coupling

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The coupling of anatomical and functional connectivity at rest suggests that anatomy is essential for wake-typical activity patterns. Here, we study the development of this coupling from wakefulness to deep sleep. Globally, similarity between whole-brain anatomical and functional connectivity networks increased during deep sleep. Regionally, we found differential coupling: during sleep, functional connectivity of primary cortices resembled more the underlying anatomical connectivity, while we observed the opposite in associative cortices. Increased anatomical–functional similarity in sensory areas is consistent with their stereotypical, cross-modal response to the environment during sleep. In distinction, looser coupling—relative to wakeful rest—in higher order integrative cortices suggests that sleep actively disrupts default patterns of functional connectivity in regions essential for the conscious access of information and that anatomical connectivity acts as an anchor for the restoration of their functionality upon awakening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AASM (2007) The AASM manual for the scoring of sleep and associated events- rules, terminology and technical specifications. American Academy of Sleep Medicine, Chicago

    Google Scholar 

  • Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Barttfeld P, Uhrig L, Sitt JD, Sigman M, Jarraya B, Dehaene S (2015) Signature of consciousness in the dynamics of resting-state brain activity. Proc Natl Acad Sci USA 112:887–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Phil Trans Roy Soc B 360:1001–1013

    Article  Google Scholar 

  • Boly M, Phillips C, Tshibanda L, Vanhaudenhuyse A, Schabus M, Dang-Vu TT, Moonen G, Hustinx R, Maquet P, Laureys S (2008) Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann N Y Acad Sci 1129:119–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boly M, Garrido MI, Gosseries O, Bruno MA, Boveroux P, Schnakers C, Massimini M, Litvak V, Laureys S, Friston K (2011) Preserved feedforward but impaired top-down processes in the vegetative state. Science 332:858–862

    Article  CAS  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349

    CAS  PubMed  Google Scholar 

  • Chialvo DR (2010) Emergent complex neural dynamics. Nat Phys 6:744–750

    Article  CAS  Google Scholar 

  • Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 22:1326–1333

    CAS  PubMed  Google Scholar 

  • Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, McGuire P, Bullmore ET (2014) The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 137:2382–2395

    Article  PubMed  PubMed Central  Google Scholar 

  • Deco G, Kringelbach ML (2014) Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron 84:892–905

    Article  CAS  PubMed  Google Scholar 

  • Deco G, McIntosh AR, Shen K, Hutchison RM, Menon RS, Everling S, Hagmann P, Jirsa VK (2014) Identification of optimal structural connectivity using functional connectivity and neural modeling. J Neurosci 34:7910–7916

    Article  CAS  PubMed  Google Scholar 

  • DeFelipe J (2010) From the connectome to the synaptome: an epic love story. Science 330:1198–1201

    Article  CAS  PubMed  Google Scholar 

  • Gabbott PL, Rolls ET (2013) Increased neuronal firing in resting and sleep in areas of the macaque medial prefrontal cortex. Eur J Neurosci 37:1737–1746

    Article  PubMed  Google Scholar 

  • Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44:162–167

    Article  CAS  PubMed  Google Scholar 

  • Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19:72–78

    Article  PubMed  Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159

    Article  PubMed  PubMed Central  Google Scholar 

  • Haimovici A, Tagliazucchi E, Balenzuela P, Chialvo DR (2013) Brain organization into resting state networks emerges at criticality on a model of the human connectome. Phys Rev Lett 110:178101

    Article  PubMed  Google Scholar 

  • Herrick CL (1893) The Evolution of Consciousness and of the Cortex. Science 21:351–352

    Article  CAS  PubMed  Google Scholar 

  • Hofman MA (2014) Evolution of the human brain: when bigger is better. Front Neuroanat 8:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci USA 106:2035–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahnke K, von Wegner F, Morzelewski A, Borisov S, Maischein M, Steinmetz H, Laufs H (2012) To wake or not to wake? The two-sided nature of the human K-complex. Neuroimage 59(2):1631–1638. doi:10.1016/j.neuroimage.2011.09.013

  • Kaas JH, Gharbawie OA, Stepniewska I (2013) Cortical networks for ethologically relevant behaviors in primates. Am J Primatol 75:407–414

    Article  PubMed  Google Scholar 

  • Kandel ER, Markram H, Matthews PM, Yuste R, Koch C (2013) Neuroscience thinks big (and collaboratively). Nat Rev Neurosci 14:659–664

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Dan Y (2012) Neuromodulation of brain states. Neuron 76(1):209–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messé A, Rudrauf D, Benali H, Marrelec G (2014) Relating structure and function in the human brain: relative contributions of anatomy, stationary dynamics, and non-stationarities. PLoS Comp Biol 10(3):e1003530

    Article  Google Scholar 

  • Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44(3):893–905

    Article  PubMed  Google Scholar 

  • Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103:8577–8582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:026113

    Article  CAS  Google Scholar 

  • Park HJ, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342:1238411

    Article  PubMed  Google Scholar 

  • Passingham RE, Stephan KE, Kotter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3:606–616

    Article  CAS  PubMed  Google Scholar 

  • Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154

    Article  PubMed  Google Scholar 

  • Rand WM (1971) Objective criteria for the evaluation of clustering methods. JASA 66:846–850

    Article  Google Scholar 

  • Reveley C, Seth AK, Pierpaoli C, Silva AC, Yu D, Saunders RC, Leopold D, Ye FQ (2015) Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc Natl Acad Sci USA 112(21):E2820–E2828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rilling JK (2014) Comparative primate neuroimaging: insights into human brain evolution. Trends Cogn Sci 18:46–55

    Article  PubMed  Google Scholar 

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069

    Article  PubMed  Google Scholar 

  • Skudlarski P, Jagannathan K, Calhoun VD, Hampson M, Skudlarska BA, Pearlson G (2008) Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage 43:554–561

    Article  PubMed  PubMed Central  Google Scholar 

  • Stam CJ, van Straaten ECW, Van Dellen E, Tewarie P, Gong G, Hillebrand A, Meier J, Van Mieghem P (2015) The relation between structural and functional connectivity patterns in complex brain networks. Int J Psychophysiol. doi:10.1016/j.ijpsycho.2015.02.011

    PubMed  Google Scholar 

  • Storey JD (2002) A direct approach to false discovery rates. J Roy Stat Soc B 64(3):479–498

    Article  Google Scholar 

  • Tagliazucchi E, Behrens M, Laufs H (2013a) Sleep neuroimaging and models of consciousness. Front Psychol 4:256

    Article  PubMed  PubMed Central  Google Scholar 

  • Tagliazucchi E, von Wegner F, Morzelewski A, Brodbeck V, Jahnke K, Laufs H (2013b) Breakdown of long-range temporal dependence in default mode and attention networks during deep sleep. Proc Natl Acad Sci USA 110:15419–15424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagliazucchi E, Carhart-Harris R, Leech R, Nutt D, Chialvo DR (2014) Enhanced repertoire of brain dynamical states during the psychedelic experience. Hum Brain Mapp 35:5442–5456

    Article  PubMed  Google Scholar 

  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289

    Article  CAS  PubMed  Google Scholar 

  • Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318

    Article  PubMed  Google Scholar 

  • Van Essen DC (2013) Cartography and connectomes. Neuron 80:775–790

    Article  PubMed  Google Scholar 

  • Xia M, Wang J, He Y (2013) BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS One 8(7):e68910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalesky A, Fornito A, Harding IH, Cocchi L, Yücel M, Pantelis C, Bullmore ET (2010) Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage 50:970–983

    Article  PubMed  Google Scholar 

  • Zilles K, Palomero-Gallagher N, Amunts K (2013) Development of cortical folding during evolution and ontogeny. Trends Neurosci 36:275–284

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Bundesministerium für Bildung und Forschung (grant number 01 EV 0703) and the LOEWE Neuronale Koordination Forschungsschwerpunkt Frankfurt (NeFF). We are indebted to Helmuth Steinmetz and Günther Deuschl for their patronage; Astrid Morzelewski for data acquisition and sleep scoring together with Kolja Jahnke; Sandra Anti, Ralf Deichmann and Steffen Volz for extensive MRI support; Thomas Sattler for excellent IT infrastructure maintenance; and our volunteers for participation in the study. We thank an anonymous reviewer and Olaf Sporns for most constructive comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzo Tagliazucchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 16626 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tagliazucchi, E., Crossley, N., Bullmore, E.T. et al. Deep sleep divides the cortex into opposite modes of anatomical–functional coupling. Brain Struct Funct 221, 4221–4234 (2016). https://doi.org/10.1007/s00429-015-1162-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1162-0

Keywords

Navigation