Skip to main content
Log in

Parallel and serial processing in dual-tasking differentially involves mechanisms in the striatum and the lateral prefrontal cortex

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The lateral prefrontal cortex and the basal ganglia are known to be important for response selection processes, also in dual-task situations. However, response selection in dual-task situations can be achieved using different modes ranging from a parallel selection to a more serial selection of responses. Nothing is known whether differences in these processing modes during dual-tasking have distinct functional neuroanatomical correlates. In this fMRI study we analyzed performance in a psychological refractory period paradigm. In this paradigm we design a PRP task where we vary the frequency of short and long stimulus onset asynchronies between the two tasks. Using mathematical constraints we interpret the effects of this manipulation with respect to processing modes ranging from more serial to more parallel response selection. Contrastingly these blocks showed that response selection in dual-tasking under the constraint of more parallel processing is mediated by mechanisms operating at the striatal level, while response selection under the constraint of more serial processing is mediated via mechanisms operating in the lateral prefrontal cortex. The results suggest that lateral prefrontal and striatal regions are ‘optimized’ for a certain processing modes in dual tasking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. When calculating the mean RT (i.e., RT1 + RT2/2) for all SOAs and the SF and LF block there was an interaction "SOA × block" [F(3, 57) = 2.88; p = 0.050; η 2 = 0.126] showing that there was at long SOAs this mean RT was slower in the SF than in the LF block. A main effect “SOA” [F(3, 57) = 81.83; p < 0.001; η 2 = 0.126] revealed that the mean RT lowest in the SOA 1,000 condition and increased to the SOA 16 condition (all conditions differed from each other (all p < 0.03). There was no main effect “block” [F(1, 19) = 0.41; p > 0.5].

References

  • Bar-Gad I, Morris G, Bergman H (2003) Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog Neurobiol 71:439–473

    Article  PubMed  Google Scholar 

  • Beste C, Saft C (2013) Action selection in a possible model of striatal medium spiny neuron dysfunction: behavioral and EEG data in a patient with benign hereditary chorea. Brain Struct Funct. doi:10.1007/s00429-013-0649-9

    Google Scholar 

  • Beste C, Ness V, Lukas C, Hoffmann R, Stüwe S, Falkenstein M, Saft C (2012) Mechanisms mediating parallel action monitoring in fronto-striatal circuits. Neuroimage 62:137–146

    Article  PubMed  Google Scholar 

  • Beste C, Yildiz A, Meissner TW, Wolf OT (2013) Stress improves task processing efficiency in dual-tasks. Behav Brain Res 252:260–265

    Article  PubMed  Google Scholar 

  • Dux PE, Ivanoff J, Asplund CL, Marois R (2006) Isolation of a central bottleneck of information processing with time-resolved fMRI. Neuron 52:1109–1120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci 17:51–72

    Article  PubMed  Google Scholar 

  • Graybiel AM (1998) The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem 70:119–136

    Article  CAS  PubMed  Google Scholar 

  • Hesselmann G, Flandin G, Dehaene S (2011) Probing the cortical network underlying the psychological refractory period: a combined EEG-fMRI study. Neuroimage 56:1608–1621

    Article  CAS  PubMed  Google Scholar 

  • Humphries M, Stewart RD, Gurney KN (2006) A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci 26:12921–12942

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Saxe R, Kanwisher N (2004) Functional magnetic resonance imaging provides new constraints on theories of the psychological refractory period. Psychol Sci 15:390–396

    Article  PubMed  Google Scholar 

  • Koch I, Prinz W (2002) Process interference and code overlap in dual-task performance. J Exp Psychol Hum Percept Perform 28:192–201

    Article  Google Scholar 

  • Koechlin E, Jubault T (2006) Broca’s area and the hierarchical organization of human behavior. Neuron 50:963–974

    Article  CAS  PubMed  Google Scholar 

  • Koechlin E, Corrado G, Pietrini P, Grafman J (2000) Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. Proc Natl Acad Sci USA 97:7651–7656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in the human prefrontal cortex. Science 302:1181–1185

    Article  CAS  PubMed  Google Scholar 

  • Leblois A, Boraud T, Meissner W, Bergman W, Hansel D (2006) Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. J Neurosci 26:3567–3583

    Article  CAS  PubMed  Google Scholar 

  • Lehle C, Hübner R (2009) Strategic capacity sharing between two tasks: evidence from tasks with the same and with different task sets. Psychol Res 73:707–726

  • Lien MC, Proctor RW (2002) Stimulus-response compatibility and psychological refractory period effects: implications for response selection. Psychonom Bull Rev 9:212–238

    Article  Google Scholar 

  • Los SA (2010) Foreperiod and the sequential effect. Theory and data. In: Coull J, Nobre AC (eds) Attention and time. Oxford University Press, Oxford, pp 289–302

    Chapter  Google Scholar 

  • Los SA, Horoufchin H (2011) Dissociative pattern of foreperiod effects in temporal discrimination and reaction time tasks. Q J Exp Psychol 64:1009–1020

    Article  Google Scholar 

  • Marois R, Ivanoff J (2005) Capacity limits of information processing in the brain. Trends Cogn Sci 9:296–305

    Article  PubMed  Google Scholar 

  • Marois R, Larson JM, Chun MM, Shima D (2006) Response-specific sources of dual-task interference in human pre-motor cortex. Psychol Res 70:436–447

    Article  CAS  PubMed  Google Scholar 

  • Meyer DE, Kieras DE (1997) A computational theory of executive cognitive processes and multiple-task performance: I. Basic mechanisms. Psychol Rev 104:3–65

    Article  CAS  PubMed  Google Scholar 

  • Miller J (2006) Backward crosstalk effects in psychological refractory period paradigms: effects of second-task response types on first-task response latencies. Psychol Res 70:484–493

    Article  PubMed  Google Scholar 

  • Miller EK, Cohen J (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  CAS  PubMed  Google Scholar 

  • Miller J, Ulrich R, Rolke B (2009) On the optimality of serial and parallel processing in the psychological refractor period paradigm: effects of the distribution of stimulus onset asynchronies. Cogn Psychol 58:273–310

    Article  PubMed  Google Scholar 

  • Mückschel M, Stock AK, Beste C (2013) Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cereb Cortex. doi:10.1093/cercor/bht066

    PubMed  Google Scholar 

  • Ness V, Beste C (2013) The role of the striatum in goal activation of cascaded actions. Neuropsychologia 51:2562–2571

    Article  PubMed  Google Scholar 

  • Oberauer K, Kliegl R (2004) Simultaneous cognitive operations in working memory after dual-task practice. J Exp Psychol Hum Percept Perform 30:689–707

    Article  PubMed  Google Scholar 

  • Pashler H (1984) Processing stages in overlapping tasks: evidence for a central bottleneck. J Exp Psychol Hum Percept Perform 10:358–377

    Article  CAS  PubMed  Google Scholar 

  • Petrides M, Pandya DN (1994) Comparative architectonic analysis of the human and the macaque frontal cortex. In: Boller F, Grafman J (eds) Handbook of neuropsychology, vol 9. Elsevier, Amsterdam, pp 17–58

    Google Scholar 

  • Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89:1009–1023

    Article  CAS  PubMed  Google Scholar 

  • Schumacher EH, Lauber EJ, Glass JM, Zurbriggen EI, Gmeindl L, Kieras DE, Meyer DE (1999) Concurrent response-selection processes in dual-task performance: evidence for adaptive executive control of task scheduling. J Exp Psychol Hum Percept Perform 25:791–814

    Article  Google Scholar 

  • Sigman M, Dehaene S (2008) Brain mechanisms of serial and parallel processing during dual-task performance. J Neurosci 28:7585–7598

    Article  CAS  PubMed  Google Scholar 

  • Sommer W, Leuthold H, Schubert T (2001) Multiple bottlenecks in information processing? An electrophysiological examination. Psychon Bull Rev 8:81–88

    Article  CAS  PubMed  Google Scholar 

  • Stelzel C, Kraft A, Brandt SA, Schubert T (2008) Dissociable neural effects of task order control and task set maintenance during dual-task processing. J Cogn Neurosci 20:613–628

    Article  PubMed  Google Scholar 

  • Szameitat AJ, Lepsien J, von Cramon DY, Sterr A, Schubert T (2006) Task-order coordination in dual-task performance and the lateral prefrontal cortex: an event- related fMRI study. Psychol Res 70:541–552

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. In: 3- Dimensional proportional system: an approach to cerebral imaging. Thieme, New York

  • Welford AT (1952) The “psychological refractory period” and the timing of high-speed performance—a review and a theory. Br J Psychol 43:2–19

    Google Scholar 

  • Wu C, Liu Y (2008) Queuing network modeling of the psychological refractory period (PRP). Psychol Rev 115:913–954

    Article  PubMed  Google Scholar 

  • Yildiz A, Chmielewski W, Beste C (2013) Dual-task performance is differentially modulated by rewards and punishments. Behav Brain Res 250:304–307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant from the Deutsche Forschungsgemeinschaft BE4045/10-1 and 10-2. We thank the reviewers, Dr. Iring Koch and an anonymous reviewer for their helpful criticisms on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Beste.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, A., Beste, C. Parallel and serial processing in dual-tasking differentially involves mechanisms in the striatum and the lateral prefrontal cortex. Brain Struct Funct 220, 3131–3142 (2015). https://doi.org/10.1007/s00429-014-0847-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0847-0

Keywords

Navigation