Skip to main content

Advertisement

Log in

The neuroinvasive profiles of H129 (herpes simplex virus type 1) recombinants with putative anterograde-only transneuronal spread properties

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The use of viruses as transneuronal tracers has become an increasingly powerful technique for defining the synaptic organization of neural networks. Although a number of recombinant alpha herpesviruses are known to spread selectively in the retrograde direction through neural circuits only one strain, the H129 strain of herpes simplex virus type 1, is reported to selectively spread in the anterograde direction. However, it is unclear from the literature whether there is an absolute block or an attenuation of retrograde spread of H129. Here, we demonstrate efficient anterograde spread, and temporally delayed retrograde spread, of H129 and three novel recombinants. In vitro studies revealed no differences in anterograde and retrograde spread of parental H129 and its recombinants through superior cervical ganglion neurons. In vivo injections of rat striatum revealed a clear bias of anterograde spread, although evidence of deficient retrograde transport was also present. Evidence of temporally delayed retrograde transneuronal spread of H129 in the retina was observed following injection of the lateral geniculate nucleus. The data also demonstrated that three novel recombinants efficiently express unique fluorescent reporters and have the capacity to infect the same neurons in dual infection paradigms. From these experiments we conclude that H129 and its recombinants not only efficiently infect neurons through anterograde transneuronal passage, but also are capable of temporally delayed retrograde transneuronal spread. In addition, the capacity to produce dual infection of projection targets following anterograde transneuronal passage provides an important addition to viral transneuronal tracing technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aldes LD (1988) Thalamic connectivity of rat somatomotor cortex. Brain Res Bull 20:333–348

    CAS  PubMed  Google Scholar 

  • Antinone SE, Zaichick SV, Smith GA (2010) Resolving the assembly state of herpes simplex virus during axon transport by live-cell imaging. J Virol 84(24):13019–13030

    PubMed Central  CAS  PubMed  Google Scholar 

  • Archin NC, Atherton SS (2002a) Infliltration of T-lymphocytes in the brain after anterior chamber inoculation of a neurovirulent and neuroinvasive strain of HSV-1. J Neuroimmunol 130:117–127

    CAS  PubMed  Google Scholar 

  • Archin NM, Atherton SS (2002b) Rapid spread of a neurovirulent strain of HSV-1 through the CNS of BALB/c mice following anterior chamber inoculation. J Neurovirol 8(2):122–135

    PubMed  Google Scholar 

  • Archin NC, van den Boom L, Perelygina L, Hilliard JM, Atherton SS (2003) Delayed spread and reduction in virus titer after anterior chamber inoculation of a recombinant of HSV-1 expressing IL-16. Invest Ophthalmol Vis Sci 44(7):3066–3076

    PubMed  Google Scholar 

  • Banfield BW, Kaufman JD, Randall JA, Pickard GE (2003) Development of pseudorabies virus strains expressing red fluorescent proteins: new tools for multisynaptic labeling applications. J Virol 77(18):10106–10112

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barnett EM, Evans GD, Sun N, Perlman S, Cassel MD (1995) Anterograde tracing of trigeminal afferent pathways from the murine tooth pulp to cortex using herpes simplex virus type 1. J Neurosci 15:2972–2984

    CAS  PubMed  Google Scholar 

  • Bartha A (1961) Experimental reduction of virulence of Aujeszky’s disease virus. Magy Allatorv Lapja 16:42–45

    Google Scholar 

  • Billig I, Foris JM, Enquist LW, Card JP, Yates BJ (2000) Definition of neuronal circuitry controlling the activity of phrenic and abdominal motoneurons in the ferret using recombinant strains of pseudorabies virus. J Neurosci 20(19):7446–7454

    CAS  PubMed  Google Scholar 

  • Bolam JP, Izzo PN (1988) The postsynaptic targets of substance P-immunoreactive terminals in the rat neostriatum with particular reference to identified spiny striatonigral neurons. Exp Brain Res 70:361–377

    CAS  PubMed  Google Scholar 

  • Bolam JP, Ingham CA, Izzo PN, Levey AI, Rye DB, Smith AD, Wainer BH (1986) Substance P-containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: a double immunocytochemical study in the rat. Brain Res 397:279–289

    CAS  PubMed  Google Scholar 

  • Boldogkoi Z, Sik A, Denes A, Reichart A, Toldi J, Gerendai I, Kovacs KJ, Palkovits M (2004) Novel tracing paradigms—genetically engineered herpesviruses as tools for mapping functional circuits within the CNS: present status and future prospects. Prog Neurobiol 72:417–445

    CAS  PubMed  Google Scholar 

  • Boldogkoi Z, Balint K, Awatramani GB, Balya D, Busskamp V, Viney TJ, Lagali PS, Duebel J, Pasti E, Tombacz D, Toth JS, Takacs IF, Scherf BG (2009) Genetically timed, activity-sensor and rainbow transsynaptic viral tools. Nat Methods 6(2):127–130

    CAS  PubMed  Google Scholar 

  • Braz JM, Rico B, Basbaum AI (2002) Transneuronal tracing of diverse CNS circuits by Cre-mediated induction of wheat germ agglutinin in transgenic mice. Proc Natl Acad Sci USA 99(23):15148–15153

    PubMed Central  CAS  PubMed  Google Scholar 

  • Braz JM, Enquist LW, Basbaum AI (2009) Inputs to serotonergic neurons revealed by conditional viral transneuronal tracing. J Comp Neurol 514:145–160

    PubMed Central  PubMed  Google Scholar 

  • Campbell RE, Herbison AE (2007a) Defining the gonadotrophin-releasing hormone neuronal network: transgenic approaches to understanding neurocircuitry. J Neuroendocrinol 19(7):561–573

    CAS  PubMed  Google Scholar 

  • Campbell RE, Herbison AE (2007b) Definition of brainstem afferents to gonadotropin-releasing hormone neurons in the mouse using conditional viral tract tracing. Endocrinology 148(12):5884–5890

    CAS  PubMed  Google Scholar 

  • Cano G, Card JP, Sved AF (2004) Dual viral transneuronal tracing of central autonomic circuits involved in the innervation of the two kidneys in the rat. J Comp Neurol 471:462–481

    PubMed  Google Scholar 

  • Card JP, Enquist LW (1994) Use of pseudorabies virus for definition of synaptically linked populations of neurons. In: Adolph KW (ed) Molecular virology techniques, part A, vol 4. Academic Press, San Diego, pp 363–382

    Google Scholar 

  • Card JP, Enquist LW (1995) Neurovirulence of pseudorabies virus. Crit Rev Neurobiol 9(2 & 3):137–162

    CAS  PubMed  Google Scholar 

  • Card JP, Enquist LW (2012) Use and visualization of neuroanatomical viral transneuronal tracers. In: Badoer E (ed) Visualization Techniques: from immunohistochemistry to magnetic resonance imaging, vol 70., NeuromethodsHumana Press, London, pp 225–268

    Google Scholar 

  • Card JP, Moore RY (1984) The suprachiasmatic nucleus of the golden hamster: immunohistochemical analysis of cell and fiber distribution. Neuroscience 13(2):415–431

    CAS  PubMed  Google Scholar 

  • Card JP, Moore RY (1989) Organization of lateral geniculate-hypothalamic connection in the rat. J Comp Neurol 284:135–147

    CAS  PubMed  Google Scholar 

  • Card JP, Rinaman L, Lynn RB, Lee B-H, Meade RP, Miselis RR, Enquist LW (1993) Pseudorabies virus infection of the rat central nervous system: ultrastructural characterization of viral replication, transport, and pathogenesis. J Neurosci 13(6):2515–2539

    CAS  PubMed  Google Scholar 

  • Card, JP, Enquist LW, Moore RY (1999) Neuroinvasiveness of pseudorabies virus is dependent upon viral concentration and terminal field density. J Comp Neurol 407:438–452

    Google Scholar 

  • Card JP, Kobiler O, Ludmir EB, Desai V, Sved AF, Enquist LW (2011a) A dual infection pseudorabies virus conditional reporter approach to identify projections to collateralized neurons in complex neural circuits. PLoS ONE 6:1–12

    Google Scholar 

  • Card JP, Kobiler O, McCambridge J, Ebdlahad S, Shan Z, Raizada MK, Sved AF, Enquist LW (2011b) Microdissection of neural networks by conditional reporter expression from a Brainbow herpesvirus. Proc Natl Acad Sci USA 108(8):3377–3382

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ch’ng TH, Enquist LW (2005) Neuron-to-cell spread of pseudorabies virus in a compartmentalized neuronal culture system. J Virol 79(17):10875–10889

    PubMed Central  PubMed  Google Scholar 

  • Ch’ng TH, Enquist LW (2006) An in vitro system to study trans-neuronal spread of pseudorabies virus infection. Vet Microbiol 113:193–197

    PubMed  Google Scholar 

  • Cowan RL, Wilson CJ (1994) Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. J Neurophysiol 71:17–32

    CAS  PubMed  Google Scholar 

  • Curanovic D, Enquist LW (2009) Directional transneuronal spread of alpha-herpesvirus infection. Future Virol 4(6):591–603

    PubMed Central  PubMed  Google Scholar 

  • Curanovic D, Ch’ng TH, Szpara ML, Enquist LW (2009) Compartmented neuron cultures for directional infection by alpha herpesviruses. Current Protoc Cell Biol 43:26.24.21–26.24.23

    Google Scholar 

  • DeFalco J, Tomishima MJ, Liu H, Zhao C, Cai X, Marth JD, Enquist LW, Friedman JM (2001) Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus. Science 291:2608–2613

    CAS  PubMed  Google Scholar 

  • Desbois C, Villanueva L (2001) The organization of lateral ventromedial thalamic connections in the rat: a link for the distribution of nociceptive signals to widespread cortical regions. Neuroscience 102:885–898

    CAS  PubMed  Google Scholar 

  • Dix RD, McKendall RR, Baringer JR (1983) Comparative neurovirulence of herpes simplex virus type 1 strain after peripheral or intracerebral inoculation of BALB/c mice. Infect Immun 40(1):103–112

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dolivo M (1980) A neurobiological approach to neurotropic viruses. Trends Neurosci 3:149–152

    Google Scholar 

  • Dum RP, Levinthal DJ, Strick PL (2009) The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J Neurosci 29(45):14223–14235

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ekstrand MI, Enquist LW, Pomerantz RJ (2008) The alpha-herpesviruses: molecular pathfinders in nervous system circuits. Trends Mol Med 14(3):134–140

    PubMed Central  CAS  PubMed  Google Scholar 

  • Enquist LW (1994) Infection of the mammalian nervous system by pseudorabies virus (PRV). Semin Virol 5:221–231

    Google Scholar 

  • Enquist LW (1999) Life beyond eradication: veterinary viruses in basic science. Arch Virol 15:87–109

    CAS  Google Scholar 

  • Enquist LW, Card JP (2003) Recent advances in the use of neurotropic viruses for circuit analysis. Curr Opin Neurobiol 13:603–606

    CAS  PubMed  Google Scholar 

  • Enquist LW, Tomishima MJ, Gross MJ, Smith GA (2002) Directional spread of alpha-herpesvirus in the nervous system. Vet Microbiol 86:5–16

    CAS  PubMed  Google Scholar 

  • Fierbach B, Bisher M, Goodhouse J, Enquist LW (2007) In vitro analysis of transneuronal spread of an alphaherpesvirus infection in peripheral nervous system neurons. J Virol 81(13):6646–6857

    Google Scholar 

  • Gardner JA, LavVail JH (1999) Differential anterograde transport of HSV type 1 viral strains in the murine optic pathway. J Neurovirol 2:140–150

    Google Scholar 

  • Garner JA, LaVail JH (1999) Differential anterograde transport of HSV type 1 viral strains in the murine optic pathway. J Neurovirol 5(2):140–150

    CAS  PubMed  Google Scholar 

  • Geerling JC, Mettenleiter TC, Loewy AD (2006) Viral tracers for the analysis of neural circuits. Neuroanatomical tract-tracing 3: molecules, neurons, systems. Springer, New York, pp 263–303

    Google Scholar 

  • Gerfen CR (2004) Basal Ganglia. In: Paxinos G (ed) The rat nervous system. Elsevier Academic Press, Amsterdam, pp 455–508

    Google Scholar 

  • Gustafson DP (1975) Pseudorabies. In: Dunne HW, Leman AD (eds) Diseases of swine. The Iowa State University Press, Ames, pp 391–410

    Google Scholar 

  • Harrington ME (1997) The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems. Neurosci Biobehav Rev 21(5):705–727

    CAS  PubMed  Google Scholar 

  • Herkenham M (1979) The afferent and efferent connections of the ventromedial thalamic nuclues of the rat. J Comp Neurol 183:487–517

    CAS  PubMed  Google Scholar 

  • Kelly RM, Strick PL (2000) Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Methods 103:63–71

    CAS  PubMed  Google Scholar 

  • Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23(23):8432–8444

    CAS  PubMed  Google Scholar 

  • Kobiler O, Lipman Y, Therkelsen K, Daubechies I, Enquist LW (2010) Herpesviruses carrying a Brainbow cassette revel replication and expression of limited numbers of incoming genomes. Nat Commun 1:146

    PubMed Central  PubMed  Google Scholar 

  • Koyuncu OO, Hogue IB, Enquist LW (2013a) Virus infections in the nervous system. Cell Host Microbe 13(4):379–393

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koyuncu OO, Perlman DH, Enquist LW (2013b) Efficient retrograde transport of pseudorabies virus within neurons requires local protein synthesis in axons. Cell Host Microbe 13(1):54–66

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kristensson K, Nennesmo I, Persson L, Lycke E (1982) Neuron to neuron transmission of herpes simplex virus. Transport from the skin to brainstem nuclei. J Neurol Sci 54:149–156

    CAS  PubMed  Google Scholar 

  • Kuypers HGJM, Ugolini G (1990) Viruses as transneuronal tracers. TINS 13:71–75

    CAS  PubMed  Google Scholar 

  • LaVail JH, Topp KS, Giblin PA, Garner JA (1997) Factors that contribute to the transneuronal spread of herpes simplex virus. J Neurosci Res 49:485–496

    CAS  PubMed  Google Scholar 

  • Lein PJ, Higgins D (1989) Laminin and a basement membrane extract have different effects on axonal and dendritic outgrowth from embryonic rat sympathetic neurons in vitro. Dev Biol 136(2):330–345

    CAS  PubMed  Google Scholar 

  • Lo L, Anderson DJ (2011) A Cre-dependent, anterograde transsynaptic viral tracer for mapping output pathways of genetically marked neurons. Neuron 72:938–950

    PubMed Central  CAS  PubMed  Google Scholar 

  • Loewy AD (1995) Pseudorabies virus: a transneuronal tracer for neuroanatomical studies. In: Kaplitt MG, Loewy AD (eds) Viral vectors. Gene therapy and neuroscience applications. Academic Press, San Diego, pp 349–366

    Google Scholar 

  • Lund RD, Lund JS, Wise RP (1974) The organization of the retinal projection to the dorsal lateral geniculate in pigmented and albino rats. J Comp Neurol 158(4):383–403

    CAS  PubMed  Google Scholar 

  • Luppi PH, Fort P, Jouvet M (1990) Iontophoretic application of unconjugated cholera toxin B subunit combined with immunohistochemistry of neurochemical substances: a method for transmitter identification of retrogradely labeled neurons. Brain Res 534:209–224

    CAS  PubMed  Google Scholar 

  • McCarthy KM, Tank DW, Enquist LW (2009) Pseudorabies virus infection alters neuronal activity and connectivity in vitro. PLoS Pathog 5(10):e1000–e1640

    Google Scholar 

  • McGeoch DJ, Dalrymple MA, Davison AJ, Dolan A, Frame MC, McNab D, Perry LJ, Scott JE, Taylor P (1988) The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69(1531–1574):1531–1574

    CAS  PubMed  Google Scholar 

  • McGeorge AJ, Faull RLM (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29:503–537

    CAS  PubMed  Google Scholar 

  • McGovern AE, Davis-Poynter N, Farrell MJ, Mazzone SB (2012a) Transneuronal tracing of airways-related sensory circuitry using herpes simplex virus 1, strain H129. Neuroscience 207:148–166

    CAS  PubMed  Google Scholar 

  • McGovern AE, Davis-Poynter N, Rakoczy J, Phipps S, Simmons DG, Mazzone SB (2012b) Anterograde neuronal circuit tracing using a genetically modified herpes simplex virus expressing EGFP. J Neurosci Methods 209:158–167

    PubMed  Google Scholar 

  • McLean IW, Nakane PK (1974) Periodate-lysine-paraformaldehyde fixative. A new fixative for immunoelectron microscopy. J Histochem Cytochem 22:1077–1083

    CAS  PubMed  Google Scholar 

  • Mettenleiter TC (1995) Molecular properties of alphaherpesviruses used in transneuronal pathway tracing. In: Kaplitt MG, Loewy AD (eds) Viral vectors. Gene therapy and neuroscience applications. Academic Press, San Diego, pp 367–393

    Google Scholar 

  • Mitchell DB, Cauller LJ (2001) Corticocortical and thalamocortical projections to layer I of the frontal neocortex in rats. Brain Res 921:68–77

    CAS  PubMed  Google Scholar 

  • Moore RY, Card JP (1994) Intergeniculate leaflet: an anatomically and functionally distinct subdivision of the lateral geniculate complex. J Comp Neurol 344:403–430

    CAS  PubMed  Google Scholar 

  • Moore RY, Weis R, Moga MM (2000) Efferent projections of the intergeniculate leaflet and the ventral lateral geniculate nucleus of the rat. J Comp Neurol 420:398–418

    CAS  PubMed  Google Scholar 

  • Nagel CH, Dohner K, Fathollahy M, Strive T, Borst EM, Messerle M, Sodeik B (2008) Nuclear egress and envelopment of herpes simplex virus capsids analyzed with dual-color fjourescence HSV1(17+). J Virol 82(6):3109–3124

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nygardas M, Paavilainen H, Muther N, Nagel CH, Roytta M, Sodeik B (2013) A herpes simplex virus-derived replicative vector expressing LIF limits experimental demyelinating disease and modulates autoimmunity. PLoS ONE 8(5):e64200

    PubMed Central  CAS  PubMed  Google Scholar 

  • O’Donnell P, Lavin A, Enquist LW, Grace AA, Card JP (1997) Interconnected parallel circuits between rat nucleus accumbens and thalamus revealed by retrograde transynaptic transport of pseudorabies virus. J Neurosci 17(6):2143–2167

    PubMed  Google Scholar 

  • Olsen LM, Ch’ng TH, Card JP, Enquist LW (2006) Role of pseudorabies virus Us3 kinase during neuronal infection. J Virol 80(1):6387–6398

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pickard GE, Smeraski CA, Tomlinson CC, Banfield BW, Kaufman J, Wilcox CL, Enquist LW, Sollars PJ (2002) Intravitreal injection of the attenuated pseudorabies virus PRV Bartha results in infection of the hamster suprachiasmatic nucleus only by retrograde transsynaptic transport via autonomic circuits. J Neurosci 22:2701–2710

    CAS  PubMed  Google Scholar 

  • Pomeranz LE, Reynolds AE, Hengartner CJ (2005) Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69:462–500

    PubMed Central  CAS  PubMed  Google Scholar 

  • Potter DD, Landis SC, Matsumoto SG, Furshpan EJ (1986) Synaptic functions in rat sympathetic neurons in microcultures. II. Adrenergic/cholinergic dual status and plasticity. J Neurosci 6(4):1080–1098

    CAS  PubMed  Google Scholar 

  • Reeves SA, Helman LJ, Allison A, Israel MA (1989) Molecular cloning and primary structure of human glial fibrillar acidic protein. Proc Natl Acad Sci USA 86(13):5178–5182

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ribak CE, Peters A (1975) An autoradiographic study of projections from the lateral geniculate body of the rat. Brain Res 92:341–368

    CAS  PubMed  Google Scholar 

  • Rinaman L, Schwartz GJ (2004) Anterograde transneuronal viral tracing of central viscerosensory pathways in rats. J Neurosci 24:2782–2786

    CAS  PubMed  Google Scholar 

  • Rinaman L, Card JP, Enquist LW (1993) Spatiotemporal responses of astrocytes, ramified microglia, and brain macrophages to central neuronal infection with pseudorabies virus. J Neurosci 13(2):685–702

    CAS  PubMed  Google Scholar 

  • Roizman B, Sears E (1996) Herpes simplex viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Fundamental Virology. Lippincott-Raven, Philadelphia, pp 1043–1107

    Google Scholar 

  • Sefton AJ, Dreher B, Harvey A (2004) Visual System. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier Academic Press, San Diego, pp 1083–1165

    Google Scholar 

  • Song CK, Enquist LW, Bartness TJ (2005) New developments in tracing neural circuits with herpesviruses. Virus Res 111:235–249

    CAS  PubMed  Google Scholar 

  • Song CK, Schwartz GJ, Bartness TJ (2009) Anterograde transneuronal viral tract tracing reveals central sensory circuits from white adipose tissue. Am J Physiol 3:501–511

    Google Scholar 

  • Sun N, Cassell MD, Perlman S (1996) Anterograde, transneuronal transport of herpes simplex virus type 1 strain H129 in the murine visual system. J Virol 70:5405–5413

    PubMed Central  CAS  PubMed  Google Scholar 

  • Swanson LW (1998) Brain maps: structure of the rat brain, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Szpara ML, Parson L, Enquist LW (2010) Sequence variability in clinical and lab isolates of Herpes Simplex 1 reveals new mutations. J Virol 84(10):5303–5313

    PubMed Central  CAS  PubMed  Google Scholar 

  • Szpara ML, Tafuri YR, Parsons L, Shamim SR, Verstrepen KJ, Legendre M, Enquist LW (2011) A wide extent of inter-strain diversity in virulent and vaccine strains of Alphaherpesviruses. PLoS Pathog 7(10):e1002282

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor MP, Kobiler O, Enquist LW (2012) Alphaherpesvirus axon-to-cell spread involves limited virion transmission. Proc Natl Acad Sci USA 109:17046–17051

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tomishima MJ, Enquist LW (2001) A conserved alpha-herpesvirus protein necessary for axonal localization of viral membrane proteins. J Cell Biol 154(4):741–752

    PubMed Central  CAS  PubMed  Google Scholar 

  • Toth IE, Wiesel O, Toth DE, Boldogkoi Z, Halasz B, Gerendai I (2008) Transneuronal retrograde viral labeling in the brain stem and hypothalamus is more intense from the left than from the right adrenal gland. Microsc Res Tech 71:503–509

    PubMed  Google Scholar 

  • Turner SL, Jenkins FJ (1997) The roles of herpes simplex virus in neuroscience. J Neurovirol 3:110–125

    CAS  PubMed  Google Scholar 

  • Vaughan CH, Bartness TJ (2012) Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses. Am J Physiol 302:R1049–R1058

    CAS  Google Scholar 

  • Watson RE, Wiegand ST, Clough RW, Hoffman GE (1986) Use of cryoprotectant to maintain long-term peptide immunoreactivity and tissue morphology. Peptides 7:155–159

    CAS  PubMed  Google Scholar 

  • Watts AG, Swanson LW (1987) Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport and simultaneous peptide immunohistochemistry in the rat. J Comp Neurol 258:230–252

    CAS  PubMed  Google Scholar 

  • Wilson CJ, Groves PM (1980) Fine structure and synaptic connections of the rat neostriatum: a study employing intracellular injection of horseradish peroxidase. J Comp Neurol 194:599–615

    CAS  PubMed  Google Scholar 

  • Wittmann G, Rziha HJ (1989) Aujeszky’s disease (pseudorabies) in pigs. In: Wittmann G (ed) Herpesvirus diseases of cattle, horses and pigs. Kluwer, Boston, pp 230–325

    Google Scholar 

  • Yamamoto T, Kishimoto Y, Yoshikawa H, Oka H (1990) Cortical laminar distribution of rat thalamic ventrolateral fibers demonstrated by the PHA-L anterograde labeling method. Neurosci Res 9:145–154

    Google Scholar 

  • Yoon H, Enquist LW, Dulac C (2005) Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123:669–682

    CAS  PubMed  Google Scholar 

  • Zaidi FN, Todd K, Enquist LW, Whitehead MC (2008) Types of taste circuits synaptically linked to a few geniculate ganglion neurons. J Comp Neurol 511:753–772

    PubMed Central  PubMed  Google Scholar 

  • Zemanick MC, Strick PL, Dix RD (1991) Direction of transneuronal transport of herpes simplex virus 1 in the primate motor system is strain-dependent. PNAS 88:8048–8051

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH grants P40 RR018604 and PEW 2010-000225-002 post-doctoral fellowship to EAE. We thank Dr. Nicholas Brecha for critical evaluation of the retinal data, Vivian Allahyari for technical assistance with the animal studies, Beate Sodeik for providing the HSV-1 BAC used to produce H129-424, Jessica Brooks for assistance in construction of H129-772, and Stuart Mazzone for providing the plasmid used to construct the H129-772 recombinant. Santiago Rompani provided essential preliminary insights into H129 transport that were instrumental in the inclusion and design of the visual system experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Patrick Card.

Additional information

G. J. Wojaczynski and E. A. Engel contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojaczynski, G.J., Engel, E.A., Steren, K.E. et al. The neuroinvasive profiles of H129 (herpes simplex virus type 1) recombinants with putative anterograde-only transneuronal spread properties. Brain Struct Funct 220, 1395–1420 (2015). https://doi.org/10.1007/s00429-014-0733-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0733-9

Keywords

Navigation