Skip to main content
Log in

Flexible coupling of covert spatial attention and motor planning based on learned spatial contingencies

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

The present study tested whether the coupling of covert attentional shifts and motor planning of pointing movements can be modulated by learning. Participants performed two tasks. As a primary movement task, they executed a pointing movement to a movement target (MT) location. As a secondary visual attention task, they identified a discrimination target (DT) that was presented shortly before initiation of the pointing movement. These DTs either occurred at the same or at different locations with the MT. A common finding in such and similar settings is the enhanced visual target identification when locations of MT and DT coincide. However, it is not known which factors govern the flexibility of spatial attention–action coupling. Here, we tested the influence of previously learned spatial contingencies between MT and DT on the coupling of covert attention and motor planning. These contingencies were manipulated in three groups (always same locations, always opposite locations, non-contingent locations) in a training session. Results indicated that in a subsequent test phase, previously learned contingencies enhanced visual identification accordingly, even when targets for the movement task and the visual task were presented at opposite sides. These results corroborate previous findings of a rather flexible interaction of attention and motor planning, and demonstrate how one can learn to control attention by means of motor planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Astafiev, S. V., Shulman, G. L., Stanley, C. M., Snyder, A. Z., van Essen, D. C., & Corbetta, M. (2003). Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. Journal of Neuroscience, 23, 4689–4699.

    Article  PubMed  Google Scholar 

  • Baldauf, D., & Deubel, H. (2010). Attentional landscapes in reaching and grasping. Vision Research, 50, 999–1013.

    Article  PubMed  Google Scholar 

  • Baldauf, D., Wolf, M., & Deubel, H. (2006). Deployment of visual attention before sequences of goal-directed hand movements. Vision Research, 46, 4355–4374.

    Article  PubMed  Google Scholar 

  • Bressler, S. L., Tang, W., Sylvester, C. M., Shulman, G. L., & Corbetta, M. (2008). Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. Journal of Neuroscience, 28, 10056–10061.

    Article  PubMed  Google Scholar 

  • Chun, M. M., & Jiang, Y. (1999). Top-down attentional guidance based on implicit learning of visual covariation. Psychological Science, 10, 360–365.

    Article  Google Scholar 

  • Chun, M. M., & Jiang, Y. (2003). Implicit, long-term spatial contextual memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 224–234.

    PubMed  Google Scholar 

  • Collins, T., Schicke, T., & Röder, B. (2008). Action goal selection and motor planning can be dissociated by tool use. Cognition, 109, 363–371.

    Article  PubMed  Google Scholar 

  • Corbetta, M. (1998). Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems?. Proceedings of the National Academy of Sciences, 95(3), 831–838.

    Article  Google Scholar 

  • Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman, G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience, 3, 292–297.

    Article  PubMed  Google Scholar 

  • Craighero, L., Fadiga, L., Rizzolatti, G., & Umiltà, C. (1999). Action for perception: A motor-visual attentional effect. Journal of Experimental Psychology: Human Perception and Performance, 25, 1673–1692.

    PubMed  Google Scholar 

  • Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36, 1827–1837.

    Article  PubMed  Google Scholar 

  • Deubel, H., & Schneider, W. X. (2003). Delayed saccades, but not delayed manual aiming movements, require visual attention shifts. Annals of the New York Academy of Sciences, 1004(1), 289–296.

    Article  PubMed  Google Scholar 

  • Deubel, H., & Schneider, W. X. (2004). Attentional selection in sequential manual movements, movements around an obstacle and in grasping. In G. W. Humphreys & M. J. Riddoch (Eds.), Attention in Action (pp. 69–91). Hove (2004): Psychology Press.

    Google Scholar 

  • Dore-Mazars, K., Pouget, P., & Beauvillain, C. (2004). Attentional selection during preparation of eye movements. Psychological Research Psychologische Forschung, 69, 67–76.

    Article  PubMed  Google Scholar 

  • Fagioli, S., Hommel, B., & Schubotz, R. I. (2007). Intentional control of attention: Action planning primes action-related stimulus dimensions. Psychological Research Psychologische Forschung, 71(1), 22–29.

    Article  PubMed  Google Scholar 

  • Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340–347.

    Article  PubMed  Google Scholar 

  • Fecteau, J. H., Bell, A. H., & Munoz, D. P. (2004). Neural correlates of the automatic and goal-driven biases in orienting spatial attention. Journal of Neurophysiology, 92, 1728–1737.

    Article  PubMed  Google Scholar 

  • Gherri, E., & Eimer, M. (2009). Manual response preparation disrupts spatial attention: An electrophysiological investigation of links between action and attention. Neuropsychologia, 48, 961–969.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gottlieb, J., Balan, P. F., Oristaglio, J., & Schneider, D. (2009). Task specific computations in attentional maps. Vision Research, 49, 1216–1226.

    Article  PubMed  Google Scholar 

  • Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Perception and Psychophysics, 57, 787–795.

    Article  PubMed  Google Scholar 

  • Hoffmann, J., & Kunde, W. (1999). Location-specific target expectancies in visual search. Journal of Experimental Psychology: Human Perception and Performance, 25, 1127–1141.

    Google Scholar 

  • Hoffmann, J., & Sebald, A. (2005). Local contextual cuing in visual search. Experimental Psychology, 52, 31–38.

    Article  PubMed  Google Scholar 

  • Huestegge, L., & Adam, J. J. (2011). Oculomotor interference during manual response preparation: Evidence from the response cueing paradigm. Attention, Perception, and Psychophysics, 73, 702–707.

    Article  Google Scholar 

  • Huestegge, L., & Koch, I. (2010). Fixation disengagement enhances peripheral perceptual processing: Evidence for a perceptual gap effect. Experimental Brain Research, 201, 631–640.

    Article  PubMed  Google Scholar 

  • Huestegge, L., & Kreutzfeldt, M. (2012). Action effects in saccade control. Psychonomic Bulletin and Review, 19, 198–203.

    Article  PubMed  Google Scholar 

  • Huestegge, L., Pieczykolan, A., & Koch, I. (2014). Talking while looking: On the encapsulation of output system representations. Cognitive Psychology, 73, 73–91.

    Article  Google Scholar 

  • Humphreys, G. W., & Riddoch, M. J. (2005). Attention in Action: Advances from Cognitive Neuroscience. Hove: Psychology Press.

    Book  Google Scholar 

  • Jonikaitis, D., & Deubel, H. (2011). Independent allocation of attention to eye and hand targets in coordinated eye-hand movements. Psychological Science, 22(3), 339–347.

    Article  PubMed  Google Scholar 

  • Jonikaitis, D., Schubert, T., & Deubel, H. (2010). Preparing coordinated eye and hand movements: dual-task costs are not attentional. Journal of Vision, 10(14), 23–23.

    Article  PubMed  Google Scholar 

  • Khan, A. Z., Blangero, A., Rossetti, Y., Salemme, R., Luaute, J., Deubel, H., & Pisella, L. (2009). Parietal damage dissociates saccade planning from presaccadic perceptual facilitation. Cerebral Cortex, 19, 383–387.

    Article  PubMed  Google Scholar 

  • Khan, A. Z., Song, J. H., & McPeek, R. M. (2011). The eye dominates in guiding attention during simultaneous eye and hand movements. Journal of Vision, 11(1), 9–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klapetek, A., Jonikaitis, D., & Deubel, H. (2016). Attention allocation before antisaccades. Journal of Vision, 16(1), 11–11.

    Article  PubMed  Google Scholar 

  • Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol., 4, 219–227.

    PubMed  Google Scholar 

  • Kowler, E., Anderson, E., Dosher, B., & Blaser, E. (1995). The role of attention in the programming of saccades. Vision Research, 35, 1897–1916.

    Article  PubMed  Google Scholar 

  • Li, H. H., Barbot, A., & Carrasco, M. (2016). Saccade preparation reshapes sensory tuning. Current Biology, 26(12), 1564–1570.

    Article  PubMed  Google Scholar 

  • Miller, J. (1988). Components of the location probability effect in visual search tasks. Journal of Experimental Psychology: Human Perception and Performance, 14, 453–471.

    PubMed  Google Scholar 

  • Moehler, T., & Fiehler, K. (2014). Effects of spatial congruency on saccade and visual discrimination performance in a dual-task paradigm. Vision Research, 105, 100–111.

    Article  PubMed  Google Scholar 

  • Montagnini, A., & Castet, E. (2007). Spatiotemporal dynamics of visual attention during saccade preparation: Independence and coupling between attention and movement planning. Journal of Vision, 7, 1–16.

    Article  PubMed  Google Scholar 

  • Moore, T., & Fallah, M. (2001). Control of Eye Movements and Spatial Attention. Proceedings of the National Academy of Sciences, 98, pp. 1273–1276.

  • Musen, G. (1996). Effects of task demands on implicit memory for object-location associations. Canadian Journal of Experimental Psychology, 50, 104–113.

    Article  Google Scholar 

  • Rizzolatti, G., & Craighero, L. (1998). Spatial Attention: Mechanisms and Theories. In M. Sabourin, F. Craik & M. Robert (Eds.), Advances in Psychological Science: Vol.2. Biological and Cognitive Aspects (pp. 171–198). East Sussex: Psychology Press.

    Google Scholar 

  • Rizzolatti, G., & Craighero, L. (2010). Pre-motor theory of attention. Scholarpedia, 5, 6311.

    Article  Google Scholar 

  • Rizzolatti, G., Riggio, L., Dascola, I., & Umiltá, C. (1987). Reorienting attention across the horizontal and vertical meridians: evidence in favor of a pre-motor theory of attention. Neuropsychologia, 25, 31–40.

    Article  PubMed  Google Scholar 

  • Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-prime user’s guide. Pittsburgh: Psychology Software Tools Inc.

    Google Scholar 

  • Smith, D. T., & Schenk, T. (2012). The premotor theory of attention: time to move on? Neuropsychologia, 50(6), 1104–1114.

    Article  PubMed  Google Scholar 

  • Song, J. H., & McPeek, R. M. (2009). Eye-hand coordination during target selection in a pop-out visual search. Journal of Neurophysiology, 102(5), 2681–2692.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stewart, E. E., & Ma-Wyatt, A. (2015). The spatiotemporal characteristics of the attentional shift relative to a reach. Journal of vision, 15(5), 10–10.

    Article  PubMed  Google Scholar 

  • Striemer, C., Locklin, J., Blangero, A., Rossetti, Y., Pisella, L., & Danckert, J. (2009). Attention for action? Examining the link between attention and visuomotor control deficits in a patient with optic ataxia. Neuropsychologia, 47, 1491–1499.

    Article  PubMed  Google Scholar 

  • Thompson, K. G., & Bichot, N. P. (2005). A visual salience map in the primate frontal eye field. Progress in Brain Research, 147, 251–262.

    PubMed  Google Scholar 

  • Tipper, S. P., Lortie, C., & Baylis, G. C. (1992). Selective reaching: Evidence for action-centered attention. Journal of Experimental Psychology Human Perception and Performance, 18, 891–891.

    Article  PubMed  Google Scholar 

  • Wykowska, A., Schubö, A., & Hommel, B. (2009). How you move is what you see: action planning biases selection in visual search. Journal of Experimental Psychology: Human Perception and Performance, 35(6), 1755–1769.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Dignath.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data, analysis scripts and e-prime files can be retrieved from the Open Science Framework: https://osf.io/73bak/?view_only=01a3fb2e4e6c45ad872afe58fc053bb4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dignath, D., Herbort, O., Pieczykolan, A. et al. Flexible coupling of covert spatial attention and motor planning based on learned spatial contingencies. Psychological Research 83, 476–484 (2019). https://doi.org/10.1007/s00426-018-1134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-018-1134-0

Navigation