Skip to main content
Log in

Trained to keep a beat: movement-related enhancements to timing perception in percussionists and non-percussionists

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Many studies demonstrate that musicians exhibit superior timing abilities compared to nonmusicians. Here, we investigated how specific musical expertise can mediate the relationship between movement and timing perception. In the present study, a group of highly trained percussionists (n = 33) and a group of non-percussionists (n = 33) were tested on their ability to detect temporal deviations of a tone presented after an isochronous sequence. Participants either tapped along with the sequence using a drumstick (movement condition) or listened without tapping (no-movement condition). Although both groups performed significantly better when moving than when listening alone, percussionists gained a greater benefit from tapping when detecting the smallest probe tone delays compared to non-percussionists. This complements both the musical expertise and timing perception literature by demonstrating that percussionists with high levels of training may further capitalize on the benefits of sensorimotor interactions. Surprisingly, percussionists and non-percussionists performed no differently when listening alone, in contrast to other studies examining the role of training in timing abilities. This raises interesting questions about the degree to which percussionists’ known expertise in timing may interact with their use of motion when judging rhythmic precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Accuracy of tap recording was verified in the experimental setup and tapping measurements were corrected for a constant latency in recording.

  2. Additional correlations are given in Online Resource 1.

References

  • Aschersleben, G. (2002). Temporal control of movements in sensorimotor synchronization. Brain and Cognition, 48, 66–79.

    Article  PubMed  Google Scholar 

  • Aschersleben, G., & Prinz, W. (1995). Synchronizing actions with events: the role of sensory information. Perception & Psychophysics, 57, 305–317.

    Article  Google Scholar 

  • Aschersleben, G., & Prinz, W. (1997). Delayed auditory feedback in synchronization. Journal of Motor Behavior, 29, 35–46.

    Article  PubMed  Google Scholar 

  • Baumann, S., Koeneke, S., Schmidt, C. F., Meyer, M., Lutz, K., & Jancke, L. (2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Research, 1161, 65–78.

    Article  PubMed  Google Scholar 

  • Bengtsson, S. L., Ullén, F., Ehrsson, H. H., Hashimoto, T., Kito, T., Naito, E., & Sadato, N. (2009). Listening to rhythms activates motor and premotor cortices. Cortex, 45, 62–71.

    Article  PubMed  Google Scholar 

  • Cameron, D. J., & Grahn, J. A. (2014). Enhanced timing abilities in percussionists generalize to rhythms without a musical beat. Frontiers in Human Neuroscience, 8, 1003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008a). Moving on time: brain network for auditory–motor synchronization is modulated by rhythm complexity and musical training. Journal of Cognitive Neuroscience, 20, 226–239.

    Article  PubMed  Google Scholar 

  • Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008b). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18, 2844–2854.

    Article  PubMed  Google Scholar 

  • Cicchini, G. M., Arrighi, R., Cecchetti, L., Giusti, M., & Burr, D. C. (2012). Optimal encoding of interval timing in expert percussionists. The Journal of Neuroscience, 32, 1056–1060.

    Article  PubMed  Google Scholar 

  • Drake, C., & Botte, M.-C. (1993). Tempo sensitivity in auditory sequences: evidence for a multiple-look model. Perception & Psychophysics, 54, 277–286.

    Article  Google Scholar 

  • Ehrlé, N., & Samson, S. (2005). Auditory discrimination of anisochrony: influence of the tempo and musical backgrounds of listeners. Brain and Cognition, 58, 133–147.

    Article  PubMed  Google Scholar 

  • Essens, P. J., & Povel, D.-J. (1985). Metrical and nonmetrical representations of temporal patterns. Perception & Psychophysics, 37, 1–7.

    Article  Google Scholar 

  • Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19, 893–906.

    Article  PubMed  Google Scholar 

  • Grahn, J. A., & Rowe, J. B. (2009). Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. The Journal of Neuroscience, 29, 7540–7548.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grube, M., & Griffiths, T. D. (2009). Metricality-enhanced temporal encoding and the subjective perception of rhythmic sequences. Cortex, 45, 72–79.

    Article  PubMed  Google Scholar 

  • Haueisen, J., & Knösche, T. R. (2001). Involuntary motor activity in pianists evoked by music perception. Journal of Cognitive Neuroscience, 13, 786–792.

    Article  PubMed  Google Scholar 

  • Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): a framework for perception and action planning. The Behavioral and Brain Sciences, 24, 849–937.

    Article  PubMed  Google Scholar 

  • Iordanescu, L., Grabowecky, M., & Suzuki, S. (2013). Action enhances auditory but not visual temporal sensitivity. Psychonomic Bulletin & Review, 20, 108–114.

    Article  Google Scholar 

  • Iversen, J. R., Repp, B. H., & Patel, A. D. (2009). Top-down control of rhythm perception modulates early auditory responses. Annals of the New York Academy of Sciences, 1169, 58–73.

    Article  PubMed  Google Scholar 

  • Jones, M. R., Jagacinski, R. J., Yee, W., Floyd, R. L., & Klapp, S. T. (1995). Tests of attentional flexibility in listening to polyrhythmic patterns. Journal of Experimental Psychology: Human Perception and Performance, 21, 293–307.

    PubMed  Google Scholar 

  • Jones, M. R., & Yee, W. (1997). Sensitivity to time change: the role of context and skill. Journal of Experimental Psychology: Human Perception and Performance, 23, 693–709.

    Google Scholar 

  • Keele, S. W., Pokorny, R. A., Corcos, D. M., & Ivry, R. (1985). Do perception and motor production share common timing mechanisms: a correlational study. Acta Psychologica, 60, 173–191.

    Article  PubMed  Google Scholar 

  • Krause, V., Pollok, B., & Schnitzler, A. (2010). Perception in action: the impact of sensory information on sensorimotor synchronization in musicians and non-musicians. Acta Psychologica, 133, 28–37.

    Article  PubMed  Google Scholar 

  • Lim, V. K., Bradshaw, J. L., Nicholls, M. E. R., & Altenmüller, E. (2003). Perceptual differences in sequential stimuli across patients with musician’s and writer’s cramp. Movement Disorders, 18, 1286–1293.

    Article  PubMed  Google Scholar 

  • Madison, G., Karampela, O., Ullén, F., & Holm, L. (2013). Effects of practice on variability in an isochronous serial interval production task: asymptotical levels of tapping variability after training are similar to those of musicians. Acta Psychologica, 143, 119–128.

    Article  PubMed  Google Scholar 

  • Madison, G., & Merker, B. (2002). On the limits of anisochrony in pulse attribution. Psychological Research, 66, 201–207.

    Article  PubMed  Google Scholar 

  • Maes, P.-J., Leman, M., Palmer, C., & Wanderley, M. M. (2014). Action-based effects on music perception. Frontiers in Psychology, 4, 1–14.

    Article  Google Scholar 

  • Manning, F., & Schutz, M. (2013). “Moving to the beat” improves timing perception. Psychonomic Bulletin & Review, 20, 1133–1139.

    Article  Google Scholar 

  • Manning, F. C., & Schutz, M. (2015). Movement enhances perceived timing in the absence of auditory feedback. Timing and Time Perception, 3, 3–12.

    Google Scholar 

  • Mates, J., Radil, T., & Pöppel, E. (1992). Cooperative tapping: time control under different feedback conditions. Perception & Psychophysics, 52, 691–704.

    Article  Google Scholar 

  • Patel, A. D., & Iversen, J. R. (2014). The evolutionary neuroscience of musical beat perception: the Action Simulation for Auditory Prediction (ASAP) hypothesis. Frontiers in Systems Neuroscience, 8, 57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips-Silver, J., & Trainor, L. J. (2007). Hearing what the body feels: auditory encoding of rhythmic movement. Cognition, 105, 533–546.

    Article  PubMed  Google Scholar 

  • Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154.

    Article  Google Scholar 

  • Rammsayer, T., & Altenmüller, E. (2006). Temporal information processing in musicians and nonmusicians. Music Perception, 24, 37–48.

    Article  Google Scholar 

  • Repp, B. H. (1999). Control of expressive and metronomic timing in pianists. Journal of Motor Behavior, 31, 145–164.

    Article  PubMed  Google Scholar 

  • Repp, B. H. (2000). Compensation for subliminal timing perturbations in perceptual–motor synchronization. Psychological Research, 63, 106–128.

    Article  PubMed  Google Scholar 

  • Repp, B. H. (2005). Sensorimotor synchronization: a review of the tapping literature. Psychonomic Bulletin & Review, 12, 969–992.

    Article  Google Scholar 

  • Repp, B. H. (2010). Sensorimotor synchronization and perception of timing: effects of music training and task experience. Human Movement Science, 29, 200–213.

    Article  PubMed  Google Scholar 

  • Repp, B. H., & Doggett, R. (2007). Tapping to a very slow beat: a comparison of musicians and nonmusicians. Music Perception, 24, 367–376.

    Article  Google Scholar 

  • Repp, B. H., London, J., & Keller, P. E. (2011). Perception-production relationships and phase correction in synchronization with two-interval rhythms. Psychological Research, 75, 227–242.

    Article  PubMed  Google Scholar 

  • Repp, B. H., London, J., & Keller, P. E. (2013). Systematic distortions in musicians’ reproduction of cyclic three-interval rhythms. Music Perception, 30, 291–305.

    Article  Google Scholar 

  • Stoklasa, J., Liebermann, C., & Fischinger, T. (2012). Timing and synchronization of professional musicians: a comparison between orchestral brass and string players. Paper presented at the 12th International Conference on Music Perception and Cognition, Thessaloniki, Greece.

  • Su, Y.-H., & Pöppel, E. (2012). Body movement enhances the extraction of temporal structures in auditory sequences. Psychological Research, 76, 373–382.

    Article  PubMed  Google Scholar 

  • Vorberg, D., & Wing, A. (1996). Modeling variability and dependence in timing. In: H. Heuer & S.W. Keele (Eds.) Handbook of Perception and Action (vol. 2: Motor Skills, pp. 181–262). London: Academic Press.

  • Wing, A. M., Doumas, M., & Welchman, A. E. (2010). Combining multisensory temporal information for movement synchronisation. Experimental Brain Research, 200, 277–282.

    Article  PubMed  Google Scholar 

  • Yee, W., Holleran, S., & Jones, M. R. (1994). Sensitivity to event timing in regular and irregular sequences: influences of musical skill. Perception & Psychophysics, 56, 461–471.

    Article  Google Scholar 

  • Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: auditory–motor interactions in music perception and production. Nature Reviews Neuroscience, 8, 547–558.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Jennifer Harris, Monique Tardif, Jotthi Bansal, Shawn Kerr, Emily Gula, Amy Wang, and Tashia Petker for assistance with data collection, and Laura Cirelli, the action editor, and the three anonymous reviewers for helpful comments on an earlier draft. This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC RGPIN/386603-2010), Ontario Early Researcher Award (ER10-07-195), and Canadian Foundation for Innovation (CFI-LOF 30101) to Michael Schutz, PI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona C. Manning.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manning, F.C., Schutz, M. Trained to keep a beat: movement-related enhancements to timing perception in percussionists and non-percussionists. Psychological Research 80, 532–542 (2016). https://doi.org/10.1007/s00426-015-0678-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-015-0678-5

Keywords

Navigation