Skip to main content
Log in

Long- and short-term plastic modeling of action prediction abilities in volleyball

  • Review
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Athletes show superior abilities not only in executing complex actions, but also in anticipating others’ moves. Here, we explored how visual and motor experiences contribute to forge elite action prediction abilities in volleyball players. Both adult athletes and supporters were more accurate than novices in predicting the fate of volleyball floating services by viewing the initial ball trajectory, while only athletes could base their predictions on body kinematics. Importantly, adolescents assigned to physical practice training improved their ability to predict the fate of the actions by reading body kinematics, while those assigned to the observational practice training improved only in understanding the ball trajectory. The results suggest that physical and observational practice might provide complementary and mutually reinforcing contributions to the superior perceptual abilities of elite athletes. Moreover, direct motor experience is required to establish novel perceptuo-motor representations that are used to predict others’ actions ahead of realization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abernethy, B., & Zawi, K. (2007). Pickup of essential kinematics underpins expert perception of movement patterns. Journal of Motor Behavior, 39(5), 353–367.

    Article  PubMed  Google Scholar 

  • Abernethy, B., Zawi, K., & Jackson, R. C. (2008). Expertise and attunement to kinematic constraints. Perception, 37(6), 931–948.

    Article  PubMed  Google Scholar 

  • Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11(9), 1109–1116.

    Article  PubMed  Google Scholar 

  • Alaerts, K., Heremans, E., Swinnen, S. P., & Wenderoth, N. (2009). How are observed actions mapped to the observer’s motor system? Influence of posture and perspective. Neuropsychologia, 47(2), 415–422.

    Article  PubMed  Google Scholar 

  • Ashford, D., Bennett, S. J., & Davids, K. (2006). Observational modeling effects for movement dynamics and movement outcome measures across differing task constraints: a meta-analysis. Journal of Motor Behavior, 38(3), 185–205.

    Article  PubMed  Google Scholar 

  • Avenanti, A., & Urgesi, C. (2011). Understanding ‘what’ others do: mirror mechanisms play a crucial role in action perception. Social Cognitive and Affective Neuroscience, 6(3), 257–259.

    Article  PubMed  Google Scholar 

  • Baker, C. I., Keysers, C., Jellema, T., Wicker, B., & Perrett, D. I. (2001). Neuronal representation of disappearing and hidden objects in temporal cortex of the macaque. Experimental Brain Research, 140(3), 375–381.

    Article  Google Scholar 

  • Barraclough, N. E., Xiao, D., Oram, M. W., & Perrett, D. I. (2006). The sensitivity of primate STS neurons to walking sequences and to the degree of articulation in static images. Progress in Brain Research, 154, 135–148.

    Article  PubMed  Google Scholar 

  • Bernier, P., Chua, R., Bard, C., & Franks, I. M. (2006). Updating of an internal model without proprioception: a deafferentation study. Neuroreport, 17(13), 1421–1425.

    Article  PubMed  Google Scholar 

  • Boutin, A., Fries, U., Panzer, S., Shea, C. H., & Blandin, Y. (2010). Role of action observation and action in sequence learning and coding. Acta Psychologica, 135(2), 240–251.

    Article  PubMed  Google Scholar 

  • Brass, M., Bekkering, H., Wohlschläger, A., & Prinz, W. (2000). Compatibility between observed and executed finger movements: comparing symbolic, spatial, and imitative cues. Brain and Cognition, 44(2), 124–143.

    Article  PubMed  Google Scholar 

  • Briggs, G. G., & Nebes, R. D. (1975). Patterns of hand preference in a student population. Cortex, 11(3), 230–238.

    PubMed  Google Scholar 

  • Brown, L. E., Wilson, E. T., & Gribble, P. L. (2009). Repetitive transcranial magnetic stimulation to the primary motor cortex interferes with motor learning by observing. Journal of Cognitive Neuroscience, 21(5), 1013–1022.

    Article  PubMed  Google Scholar 

  • Buchanan, J. J., & Wright, D. L. (2011). Generalization of action knowledge following observational learning. Acta Psychologica, 136(1), 167–178.

    Article  PubMed  Google Scholar 

  • Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: an FMRI study with expert dancers. Cerebral Cortex, 15(8), 1243–1249.

    Article  PubMed  Google Scholar 

  • Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16(19), 1905–1910.

    Article  PubMed  Google Scholar 

  • Calvo-Merino, B., Urgesi, C., Orgs, G., Aglioti, S. M., & Haggard, P. (2010). Extrastriate body area underlies aesthetic evaluation of body stimuli. Experimental Brain Research, 204(3), 447–456.

    Article  Google Scholar 

  • Cañal-Bruland, R., van der Kamp, J., & van Kesteren, J. (2010). An examination of motor and perceptual contributions to the recognition of deception from others’ actions. Human Movement Science, 29(1), 94–102.

    Article  PubMed  Google Scholar 

  • Candidi, M., Urgesi, C., Ionta, S., & Aglioti, S. M. (2008). Virtual lesion of ventral premotor cortex impairs visual perception of biomechanically possible but not impossible actions. Social Neuroscience, 3(3–4), 388–400.

    Article  PubMed  Google Scholar 

  • Carrozzo, M., Moscatelli, A., & Lacquaniti, F. (2010). Tempo rubato: animacy speeds up time in the brain. PLoS One, 5(12), e15638.

    Article  PubMed  Google Scholar 

  • Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology, 16(1), 69–74.

    Article  PubMed  Google Scholar 

  • Catmur, C., Gillmeister, H., Bird, G., Liepelt, R., Brass, M. & Heyes, C. (2008). Through the looking glass: counter-mirror activation following incompatible sensorimotor learning. The European Journal of Neuroscience, 28(6), 1208–1215.

    Google Scholar 

  • Catmur, C., Walsh, V., & Heyes, C. (2007). Sensorimotor learning configures the human mirror system. Current Biology, 17(17), 1527–1531.

    Article  PubMed  Google Scholar 

  • Catmur, C., Walsh, V., & Heyes, C. (2009). Associative sequence learning: the role of experience in the development of imitation and the mirror system. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences, 364(1528), 2369–2380.

    Article  Google Scholar 

  • Cattaneo, L., Barchiesi, G., Tabarelli, D., Arfeller, C., Sato, M., & Glenberg, A. M. (2010). One’s motor performance predictably modulates the understanding of others’ actions through adaptation of premotor visuo-motor neurons. Social Cognitive and Affective Neuroscience, 6(3), 301–310.

    Article  PubMed  Google Scholar 

  • Censor, N., & Cohen, L. G. (2011). Using repetitive transcranial magnetic stimulation to study the underlying neural mechanisms of human motor learning and memory. The Journal of Physiology, 589(Pt 1), 21–28.

    Article  PubMed  Google Scholar 

  • Chong, T. T., Cunnington, R., Williams, M. A., Kanwisher, N., & Mattingley, J. B. (2008). fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Current Biology, 18(20), 1576–1580.

    Article  PubMed  Google Scholar 

  • Christensen, A., Ilg, W., & Giese, M. A. (2011). Spatiotemporal tuning of the facilitation of biological motion perception by concurrent motor execution. The Journal of Neuroscience, 31(9), 3493–3499.

    Article  PubMed  Google Scholar 

  • Cook, R., Press, C., Dickinson, A., & Heyes, C. (2010). Acquisition of automatic imitation is sensitive to sensorimotor contingency. Journal of Experimental Psychology: Human Perception and Performance, 36(4), 840–852.

    Article  PubMed  Google Scholar 

  • Cross, E. S., Hamilton, A. F. D. C., & Grafton, S. T. (2006). Building a motor simulation de novo: observation of dance by dancers. NeuroImage, 31(3), 1257–1267.

    Article  PubMed  Google Scholar 

  • Cross, E. S., Hamilton, A. F. D. C., Kraemer, D. J. M., Kelley, W. M., & Grafton, S. T. (2009a). Dissociable substrates for body motion and physical experience in the human action observation network. The European Journal of Neuroscience, 30(7), 1383–1392.

    Article  PubMed  Google Scholar 

  • Cross, E. S., Kraemer, D. J. M., Hamilton, A. F. D. C., Kelley, W. M., & Grafton, S. T. (2009b). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19(2), 315–326.

    Article  PubMed  Google Scholar 

  • Dessing, J. C., & Craig, C. M. (2010). Bending it like Beckham: how to visually fool the goalkeeper. PLoS One, 5(10), e13161.

    Article  PubMed  Google Scholar 

  • di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91(1), 176–180.

    Google Scholar 

  • Dinstein, I., Thomas, C., Humphreys, K., Minshew, N., Behrmann, M., & Heeger, D. J. (2010). Normal movement selectivity in autism. Neuron, 66(3), 461–469.

    Article  PubMed  Google Scholar 

  • Farrow, D., & Abernethy, B. (2003). Do expertise and the degree of perception-action coupling affect natural anticipatory performance? Perception, 32(9), 1127–1139.

    Article  PubMed  Google Scholar 

  • Fazio, P., Cantagallo, A., Craighero, L., D’Ausilio, A., Roy, A. C., Pozzo, T., et al. (2009). Encoding of human action in Broca’s area. Brain, 132(Pt 7), 1980–1988.

    Article  PubMed  Google Scholar 

  • Flach, R., Knoblich, G., & Prinz, W. (2004). The two-thirds power law in motion perception. Visual Cognition, 11(4), 461–481.

    Article  Google Scholar 

  • Freyd, J. J. (1983). The mental representation of movement when static stimuli are viewed. Perception & Psychophysics, 33(6), 575–581.

    Google Scholar 

  • Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(Pt 2), 593–609.

    Article  PubMed  Google Scholar 

  • Gangitano, M., Mottaghy, F. M., & Pascual-Leone, A. (2004). Modulation of premotor mirror neuron activity during observation of unpredictable grasping movements. The European Journal of Neuroscience, 20(8), 2193–2202.

    Article  PubMed  Google Scholar 

  • Garrison, K. A., Winstein, C. J., & Aziz-Zadeh, L. (2010). The mirror neuron system: a neural substrate for methods in stroke rehabilitation. Neurorehabilitation and Neural Repair, 24(5), 404–412.

    Article  PubMed  Google Scholar 

  • Grafton, S. T. (2009). Embodied cognition and the simulation of action to understand others. Annals of the New York Academy of Sciences, 1156, 97–117.

    Article  PubMed  Google Scholar 

  • Grafton, S. T., & Hamilton, A. F. D. C. (2007). Evidence for a distributed hierarchy of action representation in the brain. Human Movement Science, 26(4), 590–616.

    Article  PubMed  Google Scholar 

  • Gruetzmacher, N., Panzer, S., Blandin, Y. & Shea, C.H. (2011). Observation and physical practice: Coding of simple motor sequences. Quarterly Journal of Experimental Psychology, 64(6), 1111–1123.

    Google Scholar 

  • Hayes, S. J., Elliott, D., & Bennett, S. J. (2010). General motor representations are developed during action-observation. Experimental Brain Research, 204(2), 199–206.

    Article  Google Scholar 

  • Hayes, S. J., Timmis, M. A., & Bennett, S. J. (2009). Eye movements are not a prerequisite for learning movement sequence timing through observation. Acta Psychologica, 131(3), 202–208.

    Article  PubMed  Google Scholar 

  • Hecht, H., Vogt, S., & Prinz, W. (2001). Motor learning enhances perceptual judgment: a case for action-perception transfer. Psychological Research, 65(1), 3–14.

    Article  PubMed  Google Scholar 

  • Hermsdörfer, J., Goldenberg, G., Wachsmuth, C., Conrad, B., Ceballos-Baumann, A. O., Bartenstein, P., et al. (2001). Cortical correlates of gesture processing: clues to the cerebral mechanisms underlying apraxia during the imitation of meaningless gestures. Neuroimage, 14(1 Pt 1), 149–161.

    Article  PubMed  Google Scholar 

  • Heyes, C. (2010). Where do mirror neurons come from? Neuroscience and Biobehavioral Reviews, 34(4), 575–583.

    Article  PubMed  Google Scholar 

  • Heyes, C., Bird, G., Johnson, H., & Haggard, P. (2005). Experience modulates automatic imitation. Brain Research. Cognitive Brain Research, 22(2), 233–240.

    Article  PubMed  Google Scholar 

  • Heyes, C. M., & Foster, C. L. (2002). Motor learning by observation: evidence from a serial reaction time task. The Quarterly Journal of Experimental Psychology. A Human Experimental Psychology, 55(2), 593–607.

    Google Scholar 

  • Holmes, P., & Calmels, C. (2008). A neuroscientific review of imagery and observation use in sport. Journal of Motor Behavior, 40(5), 433–445.

    Article  PubMed  Google Scholar 

  • Hommel, B., Musseler, J., Aschersleben, G. & Prinz, W. (2001). The Theory of Event Coding (TEC): a framework for perception and action planning. The Behavioral and Brain Sciences, 24(5), 849–878 (discussion 878–937).

  • Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin & Review, 12(5), 822–851.

    Article  Google Scholar 

  • Jackson, R. C., Warren, S., & Abernethy, B. (2006). Anticipation skill and susceptibility to deceptive movement. Acta Psychologica, 123(3), 355–371.

    Article  PubMed  Google Scholar 

  • Jellema, T., & Perrett, D. I. (2003a). Perceptual history influences neural responses to face and body postures. Journal of Cognitive Neuroscience, 15(7), 961–971.

    Article  PubMed  Google Scholar 

  • Jellema, T., & Perrett, D. I. (2003b). Cells in monkey STS responsive to articulated body motions and consequent static posture: a case of implied motion? Neuropsychologia, 41(13), 1728–1737.

    Article  PubMed  Google Scholar 

  • Keysers, C., & Perrett, D. I. (2004). Demystifying social cognition: a Hebbian perspective. Trends in Cognitive Sciences, 8(11), 501–507.

    Article  PubMed  Google Scholar 

  • Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: an account of the mirror neuron system. Cognitive Processing, 8(3), 159–166.

    Article  PubMed  Google Scholar 

  • Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., & Frith, C. D. (2009). Evidence of mirror neurons in human inferior frontal gyrus. The Journal of Neuroscience, 29(32), 10153–10159.

    Article  PubMed  Google Scholar 

  • Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Current Biology, 13(6), 522–525.

    Article  PubMed  Google Scholar 

  • Kilner, J. M., Vargas, C., Duval, S., Blakemore, S., & Sirigu, A. (2004). Motor activation prior to observation of a predicted movement. Nature Neuroscience, 7(12), 1299–1301.

    Article  PubMed  Google Scholar 

  • Knoblich, G., & Flach, R. (2001). Predicting the effects of actions: interactions of perception and action. Psychological Science, 12(6), 467–472.

    Article  PubMed  Google Scholar 

  • Knoblich, G., Seigerschmidt, E., Flach, R., & Prinz, W. (2002). Authorship effects in the prediction of handwriting strokes: evidence for action simulation during action perception. The Quarterly Journal of Experimental Psychology. A Human Experimental Psychology, 55(3), 1027–1046.

    Google Scholar 

  • Komatsu, H. (2006). The neural mechanisms of perceptual filling-in. Nature Reviews. Neuroscience, 7(3), 220–231.

    Article  PubMed  Google Scholar 

  • Kourtzi, Z., & Kanwisher, N. (2000). Activation in human MT/MST by static images with implied motion. Journal of Cognitive Neuroscience, 12(1), 48–55.

    Article  PubMed  Google Scholar 

  • Kraskov, A., Dancause, N., Quallo, M. M., Shepherd, S., & Lemon, R. N. (2009). Corticospinal neurons in macaque ventral premotor cortex with mirror properties: a potential mechanism for action suppression? Neuron, 64(6), 922–930.

    Article  PubMed  Google Scholar 

  • Krekelberg, B., Dannenberg, S., Hoffmann, K., Bremmer, F., & Ross, J. (2003). Neural correlates of implied motion. Nature, 424(6949), 674–677.

    Google Scholar 

  • Krekelberg, B., Vatakis, A., & Kourtzi, Z. (2005). Implied motion from form in the human visual cortex. Journal of Neurophysiology, 94(6), 4373–4386.

    Google Scholar 

  • Lingnau, A., Gesierich, B. & Caramazza, A. (2009). Asymmetric fMRI adaptation reveals no evidence for mirror neurons in humans. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 9925–9930.

  • Lorteije, J. A. M., Kenemans, J. L., Jellema, T., van der Lubbe, R. H. J., Lommers, M. W. & van Wezel, R. J. A. (2007). Adaptation to real motion reveals direction-selective interactions between real and implied motion processing. Journal of Cognitive Neuroscience, 19(8), 1231–1240.

    Google Scholar 

  • Maeda, F., Kleiner-Fisman, G., & Pascual-Leone, A. (2002). Motor facilitation while observing hand actions: specificity of the effect and role of observer’s orientation. Journal of Neurophysiology, 87(3), 1329–1335.

    PubMed  Google Scholar 

  • Maslovat, D., Hodges, N. J., Krigolson, O. E., & Handy, T. C. (2010). Observational practice benefits are limited to perceptual improvements in the acquisition of a novel coordination skill. Experimental Brain Research, 204(1), 119–130.

    Article  Google Scholar 

  • Mattar, A. A. G., & Gribble, P. L. (2005). Motor learning by observing. Neuron, 46(1), 153–160.

    Article  PubMed  Google Scholar 

  • Moscatelli, A., Polito, L., & Lacquaniti, F. (2011). Time perception of action photographs is more precise than that of still photographs. Experimental Brain Research, 210(1), 25–32.

    Article  Google Scholar 

  • Motes, M. A., Hubbard, T. L., Courtney, J. R., & Rypma, B. (2008). A principal components analysis of dynamic spatial memory biases. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34(5), 1076–1083.

    Article  PubMed  Google Scholar 

  • Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S., et al. (2002). Early consolidation in human primary motor cortex. Nature, 415(6872), 640–644.

    Article  PubMed  Google Scholar 

  • Mukamel, R., Ekstrom, A., Kaplan, J., Iacoboni, M. & Fried, I. (2010). Single-Neuron Responses in Humans during Execution and Observation of Actions. Current Biology, 20(8), 750–756.

    Google Scholar 

  • Ong, N. T., & Hodges, N. J. (2010). Absence of after-effects for observers after watching a visuomotor adaptation. Experimental Brain Research, 205(3), 325–334.

    Article  Google Scholar 

  • Orgs, G., Bestmann, S., Schuur, F., & Haggard, P. (2011). From body form to biological motion: the apparent velocity of human movement biases subjective time. Psychological Science, 22(6), 712–717.

    Article  PubMed  Google Scholar 

  • Orgs, G., Dombrowski, J., Heil, M., & Jansen-Osmann, P. (2008). Expertise in dance modulates alpha/beta event-related desynchronization during action observation. The European Journal of Neuroscience, 27(12), 3380–3384.

    Article  PubMed  Google Scholar 

  • Pazzaglia, M., Pizzamiglio, L., Pes, E., & Aglioti, S. M. (2008a). The sound of actions in apraxia. Current Biology, 18(22), 1766–1772.

    Article  PubMed  Google Scholar 

  • Pazzaglia, M., Smania, N., Corato, E., & Aglioti, S. M. (2008b). Neural underpinnings of gesture discrimination in patients with limb apraxia. The Journal of Neuroscience, 28(12), 3030–3041.

    Article  PubMed  Google Scholar 

  • Peigneux, P., Salmon, E., van der Linden, M., Garraux, G., Aerts, J., Delfiore, G., et al. (2000). The role of lateral occipitotemporal junction and area MT/V5 in the visual analysis of upper-limb postures. NeuroImage, 11(6 Pt 1), 644–655.

    Article  PubMed  Google Scholar 

  • Perrett, D. I., Xiao, D., Barraclough, N. E., Keysers, C. & Oram, M.W. (2009). Seeing the future: Natural image sequences produce “anticipatory” neuronal activity and bias perceptual report. Quarterly Journal of Experimental Psychology, 62(11), 2081–2104.

    Google Scholar 

  • Pessoa, L., Thompson, E. & Noë, A. (1998). Finding out about filling-in: a guide to perceptual completion for visual science and the philosophy of perception. The Behavioral and Brain Sciences, 21(6), 723–748 (discussion 748–802).

  • Petroni, A., Baguear, F., & Della-Maggiore, V. (2010). Motor resonance may originate from sensorimotor experience. Journal of Neurophysiology, 104(4), 1867–1871.

    Article  PubMed  Google Scholar 

  • Peuskens, H., Vanrie, J., Verfaillie, K., & Orban, G. A. (2005). Specificity of regions processing biological motion. The European Journal of Neuroscience, 21(10), 2864–2875.

    Article  PubMed  Google Scholar 

  • Pobric, G., & Hamilton, A. F. D. C. (2006). Action understanding requires the left inferior frontal cortex. Current Biology, 16(5), 524–529.

    Article  PubMed  Google Scholar 

  • Porro, C. A., Facchin, P., Fusi, S., Dri, G., & Fadiga, L. (2007). Enhancement of force after action observation: behavioural and neurophysiological studies. Neuropsychologia, 45(13), 3114–3121.

    Article  PubMed  Google Scholar 

  • Prather, J. F., Peters, S., Nowicki, S., & Mooney, R. (2008). Precise auditory-vocal mirroring in neurons for learned vocal communication. Nature, 451(7176), 305–310.

    Article  PubMed  Google Scholar 

  • Press, C., Heyes, C., & Kilner, J. M. (2011). Learning to understand others’ actions. Biology Letters, 7(3), 457–460.

    Article  PubMed  Google Scholar 

  • Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129–154.

    Article  Google Scholar 

  • Proverbio, A. M., Riva, F., & Zani, A. (2009). Observation of static pictures of dynamic actions enhances the activity of movement-related brain areas. PLoS ONE, 4(5), e5389.

    Article  PubMed  Google Scholar 

  • Puce, A., & Perrett, D. (2003). Electrophysiology and brain imaging of biological motion. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences, 358(1431), 435–445.

    Article  Google Scholar 

  • Ramnani, N., & Miall, R. C. (2004). A system in the human brain for predicting the actions of others. Nature Neuroscience, 7(1), 85–90.

    Article  PubMed  Google Scholar 

  • Reithler, J., van Mier, H. I., Peters, J. C., & Goebel, R. (2007). Nonvisual motor learning influences abstract action observation. Current Biology, 17(14), 1201–1207.

    Article  PubMed  Google Scholar 

  • Ripoll, H., Kerlirzin, Y., Stein, J., & Reine, B. (1995). Analysis of information processing, decision making, and visual strategies in complex problem solving sport situations. Human Movement Science, 14, 325–349.

    Article  Google Scholar 

  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.

    Article  PubMed  Google Scholar 

  • Sasaki, Y., Nanez, J. E., & Watanabe, T. (2010). Advances in visual perceptual learning and plasticity. Nature Reviews. Neuroscience, 11(1), 53–60.

    Article  PubMed  Google Scholar 

  • Schütz-Bosbach, S., & Prinz, W. (2007). Prospective coding in event representation. Cognitive Processing, 8(2), 93–102.

    Article  PubMed  Google Scholar 

  • Sebanz, N., & Shiffrar, M. (2009). Detecting deception in a bluffing body: the role of expertise. Psychonomic Bulletin & Review, 16(1), 170–175.

    Article  Google Scholar 

  • Senior, C., Barnes, J., Giampietro, V., Simmons, A., Bullmore, E. T., Brammer, M., et al. (2000). The functional neuroanatomy of implicit-motion perception or representational momentum. Current Biology, 10(1), 16–22.

    Article  PubMed  Google Scholar 

  • Senior, C., Ward, J., & David, A. S. (2002). Representational momentum and the brain: An investigation into the functional necessity of V5/MT. Visual Cognition, 9(1), 81–92.

    Article  Google Scholar 

  • Shea, C. H., Wright, D. L., Wulf, G., & Whitacre, C. (2000). Physical and observational practice afford unique learning opportunities. Journal of Motor Behavior, 32(1), 27–36.

    Article  PubMed  Google Scholar 

  • Small, S. L., Buccino, G. & Solodkin, A. (2010). The mirror neuron system and treatment of stroke. Developmental Psychobiology. doi:10.1002/dev.20504.

  • Smeeton, N. J. & Huys, R. (2010). Anticipation of tennis-shot direction from whole-body movement: The role of movement amplitude and dynamics. Human Movement Science. doi:10.1016/j.humov.2010.07.012.

  • Springer, A., Brandstadter, S., Liepelt, R., Birngruber, T., Giese, M., Mechsner, F., et al. (2011). Motor execution affects action prediction. Brain and Cognition, 76(1), 26–36.

    Article  PubMed  Google Scholar 

  • Stefan, K., Cohen, L. G., Duque, J., Mazzocchio, R., Celnik, P., Sawaki, L., et al. (2005). Formation of a motor memory by action observation. The Journal of Neuroscience, 25(41), 9339–9346.

    Article  PubMed  Google Scholar 

  • Streuber, S., Knoblich, G., Sebanz, N., Bülthoff, H.H. & de la Rosa, S. (2011). The effect of social context on the use of visual information. Experimental Brain Research. doi:10.1007/s00221-011-2830-9.

  • Stürmer, B., Aschersleben, G., & Prinz, W. (2000). Correspondence effects with manual gestures and postures: a study of imitation. Journal of Experimental Psychology: Human Perception and Performance, 26(6), 1746–1759.

    Article  PubMed  Google Scholar 

  • Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., et al. (2001). I know what you are doing. A neurophysiological study. Neuron, 31(1), 155–165.

    Article  PubMed  Google Scholar 

  • Urgesi, C., Candidi, M., Fabbro, F., Romani, M., & Aglioti, S. M. (2006a). Motor facilitation during action observation: topographic mapping of the target muscle and influence of the onlooker’s posture. The European Journal of Neuroscience, 23(9), 2522–2530.

    Article  PubMed  Google Scholar 

  • Urgesi, C., Candidi, M., Ionta, S., & Aglioti, S. M. (2007). Representation of body identity and body actions in extrastriate body area and ventral premotor cortex. Nature Neuroscience, 10(1), 30–31.

    Article  PubMed  Google Scholar 

  • Urgesi, C., Maieron, M., Avenanti, A., Tidoni, E., Fabbro, F., & Aglioti, S. M. (2010). Simulating the future of actions in the human corticospinal system. Cerebral Cortex, 20(11), 2511–2521.

    Article  PubMed  Google Scholar 

  • Urgesi, C., Moro, V., Candidi, M., & Aglioti, S. M. (2006b). Mapping implied body actions in the human motor system. The Journal of Neuroscience, 26(30), 7942–7949.

    Article  PubMed  Google Scholar 

  • Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage, 48(3), 564–584.

    Article  PubMed  Google Scholar 

  • Verfaillie, K., & Daems, A. (2002). Representing and anticipating human actions in vision. Visual Cognition, 9(1), 217–232.

    Article  Google Scholar 

  • Vinter, A., & Perruchet, P. (2002). Implicit motor learning through observational training in adults and children. Memory & Cognition, 30(2), 256–261.

    Article  Google Scholar 

  • Weissensteiner, J., Abernethy, B., Farrow, D., & Müller, S. (2008). The development of anticipation: A cross-sectional examination of the practice experiences contributing to skill in cricket batting. Journal of Sport & Exercise Psychology, 30(6), 663–684.

    Google Scholar 

  • Wenke, D., & Haggard, P. (2009). How voluntary actions modulate time perception. Experimental Brain Research, 196(1), 311–318.

    Article  Google Scholar 

  • Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131(3), 460–473.

    Article  PubMed  Google Scholar 

  • Zago, M., & Lacquaniti, F. (2005). Visual perception and interception of falling objects: a review of evidence for an internal model of gravity. Journal of Neural Engineering, 2(3), S198–S208.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Istituto Italiano di Tecnologia SEED 2009 (Prot. n. 21538) and from the Ministero Istruzione Università e Ricerca (Progetti di Ricerca di Interesse Nazionale, PRIN 2009; Prot. n. 2009A8FR3Z) to C.U. and S.M.A and from Istituto di Ricovero e Cura a Carattere Scientifico ‘‘E. Medea’’ (Ricerca Corrente 2009, Ministero della Salute) to C.U. We thank Dr. Claudia Lopes for her help in data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosimo Urgesi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urgesi, C., Savonitto, M.M., Fabbro, F. et al. Long- and short-term plastic modeling of action prediction abilities in volleyball. Psychological Research 76, 542–560 (2012). https://doi.org/10.1007/s00426-011-0383-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-011-0383-y

Keywords

Navigation