Skip to main content
Log in

Epileptic channelopathies caused by neuronal Kv7 (KCNQ) channel dysfunction

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Seizures are the most common neurological manifestation in the newborn period, with an estimated incidence of 1.8–3.5 per 1000 live births. Prolonged or intractable seizures have a detrimental effect on cognition and brain function in experimental animals and are associated with adverse long-term neurodevelopmental sequelae and an increased risk of post-neonatal epilepsy in humans. The developing brain is particularly susceptible to the potentially severe effects of epilepsy, and epilepsy, especially when refractory to medications, often results in a developmental and epileptic encephalopathy (DEE) with developmental arrest or regression. DEEs can be primarily attributed to genetic causes. Given the critical role of potassium (K+) currents with distinct subcellular localization, biophysical properties, modulation, and pharmacological profile in regulating intrinsic electrical properties of neurons and their responsiveness to synaptic inputs, it is not too surprising that genetic research in the past two decades has identified several K+ channel genes as responsible for a large fraction of DEE. In the present article, we review the genetically determined epileptic channelopathies affecting three members of the Kv7 family, namely Kv7.2 (KCNQ2), Kv7.3 (KCNQ3), and Kv7.5 (KCNQ5); we review the phenotypic spectrum of Kv7-related epileptic channelopathies, the different genetic and pathogenetic mechanisms, and the emerging genotype-phenotype correlations which may prove crucial for prognostic predictions, disease management, parental counseling, and individually tailored therapeutic attempts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abidi A, Devaux JJ, Molinari F, Alcaraz G, Michon FX, Sutera-Sardo J, Becq H, Lacoste C, Altuzarra C, Afenjar A, Mignot C, Doummar D, Isidor B, Guyen SN, Colin E, De La Vaissière S, Haye D, Trauffler A, Badens C, Prieur F, Lesca G, Villard L, Milh M, Aniksztejn L (2015) A recurrent KCNQ2 pore mutation causing early onset epileptic encephalopathy has a moderate effect on M current but alters subcellular localization of Kv7 channels. Neurobiol Dis 80:80–92. https://doi.org/10.1016/j.nbd.2015.04.017

    Article  CAS  PubMed  Google Scholar 

  2. Alaimo A, Gómez-Posada JC, Aivar P, Etxeberría A, Rodriguez Alfaro JA, Areso P, Villarroel A (2009) Calmodulin activation limits the rate of KCNQ2 K+ channel exit from the endoplasmic reticulum. J Biol Chem 284:20668–20675. https://doi.org/10.1074/jbc.M109.019539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ambrosino P, Freri E, Castellotti B, Soldovieri MV, Mosca I, Manocchio L, Gellera C, Canafoglia L, Franceschetti S, Salis B, Iraci N, Miceli F, Ragona F, Granata T, DiFrancesco JC, Taglialatela M (2018) Kv7.3 compound heterozygous variants in early onset encephalopathy reveal additive contribution of C-terminal residues to PIP2-dependent K+ channel gating. Mol Neurobiol 55:7009–7024. https://doi.org/10.1007/s12035-018-0883-5

    Article  CAS  PubMed  Google Scholar 

  4. Battefeld A, Tran BT, Gavrilis J, Cooper EC, Kole MH (2014) Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons. J Neurosci 34:3719–3732. https://doi.org/10.1523/JNEUROSCI.4206-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E (2012) The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 18:467–486. https://doi.org/10.1177/1073858412438697

    Article  CAS  PubMed  Google Scholar 

  6. Berkovic SF, Heron SE, Giordano L, Marini C, Guerrini R, Kaplan RE, Gambardella A, Steinlein OK, Grinton BE, Dean JT, Bordo L, Hodgson BL, Yamamoto T, Mulley JC, Zara F, Scheffer IE (2004) Benign familial neonatal-infantile seizures: characterization of a new sodium channelopathy. Ann Neurol 55:550–557. https://doi.org/10.1002/ana.20029

    Article  CAS  PubMed  Google Scholar 

  7. Blumkin L, Suls A, Deconinck T, De Jonghe P, Linder I, Kivity S, Dabby R, Leshinsky-Silver E, Lev D, Lerman-Sagie T (2012) Neonatal seizures associated with a severe neonatal myoclonus like dyskinesia due to a familial KCNQ2 gene mutation. Eur J Paediatr Neurol 16:356–360. https://doi.org/10.1016/j.ejpn.2011.11.004

    Article  PubMed  Google Scholar 

  8. Bosch DG, Boonstra FN, de Leeuw N, Pfundt R, Nillesen WM, de Ligt J, Gilissen C, Jhangiani S, Lupski JR, Cremers FP, de Vries BB (2016) Novel genetic causes for cerebral visual impairment. Eur J Hum Genet 24:660–665. https://doi.org/10.1038/ejhg.2015.186

    Article  CAS  PubMed  Google Scholar 

  9. Brown DA (2020) Neurons, receptors, and channels. Annu Rev Pharmacol Toxicol 6(60):9–30. https://doi.org/10.1146/annurev-pharmtox-010919-023755

    Article  CAS  Google Scholar 

  10. Brown DA, Adams PR (1980) Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283:673–676. https://doi.org/10.1038/283673a0

    Article  CAS  PubMed  Google Scholar 

  11. Castaldo P, del Giudice EM, Coppola G, Pascotto A, Annunziato L, Taglialatel M (2002) Benign familial neonatal convulsions caused by altered gating of KCNQ2/KCNQ3 potassium channels. J Neurosci 22:RC199

    Article  Google Scholar 

  12. Catterall WA (2018) Dravet syndrome: a sodium channel interneuronopathy. Curr Opin Physiol 2:42–50. https://doi.org/10.1016/j.cophys.2017

    Article  PubMed  Google Scholar 

  13. Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE, Leach RJ, Leppert M (1998) A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 18:53–55. https://doi.org/10.1038/ng0198-53

    Article  CAS  PubMed  Google Scholar 

  14. Cherubini E, Gaiarsa JL, Ben-Ari Y (1991) GABA: an excitatory transmitter in early postnatal life. Trends Neurosci 14:515–519. https://doi.org/10.1016/0166-2236(91)90003-d

    Article  CAS  PubMed  Google Scholar 

  15. Cooper EC, Harrington E, Jan YN, Jan LY (2001) M channel KCNQ2 subunits are localized to key sites for control of neuronal network oscillations and synchronization in mouse brain. J Neurosci 21:9529–9540

    Article  CAS  Google Scholar 

  16. Dedek K, Kunath B, Kananura C, Reuner U, Jentsch TJ, Steinlein OK (2001) Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. PNAS 98:12272–12277. https://doi.org/10.1073/pnas.211431298

    Article  CAS  PubMed  Google Scholar 

  17. Devaux JJ, Kleopa KA, Cooper EC, Scherer SS (2004) KCNQ2 is a nodal K+ channel. J Neurosci 24:1236–1244. https://doi.org/10.1523/JNEUROSCI.4512-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Devaux JJ, Abidi A, Roubertie A, Molinari F, Becq H, Lacoste C, Villard L, Milh M, Aniksztejn L (2016) A Kv7.2 mutation associated with early onset epileptic encephalopathy with suppression-burst enhances Kv7/M channel activity. Epilepsia 57:e87–e93. https://doi.org/10.1111/epi.13366

    Article  CAS  PubMed  Google Scholar 

  19. Du W, Bautista JF, Yang H, Diez-Sampedro A, You SA, Wang L, Kotagal P, Lüders HO, Shi J, Cui J, Richerson GB, Wang QK (2005) Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 37:733–738. https://doi.org/10.1038/ng1585

    Article  CAS  PubMed  Google Scholar 

  20. Epi4K Consortium & Epilepsy Phenome/Genome Project (2013) De novo mutations in epileptic encephalopathies. Nature 501:217–221. https://doi.org/10.1038/nature12439

    Article  CAS  Google Scholar 

  21. Etzioni A, Siloni S, Chikvashvilli D, Strulovich R, Sachyani D, Regev N, Greitzer-Antes D, Hirsch JA, Lotan I (2011) Regulation of neuronal M-channel gating in an isoform-specific manner: functional interplay between calmodulin and syntaxin 1A. J Neurosci 31:14158–14171. https://doi.org/10.1523/JNEUROSCI.2666-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fidzinski P, Korotkova T, Heidenreich M, Maier N, Schuetze S, Kobler O, Zuschratter W, Schmitz D, Ponomarenko A, Jentsch TJ (2015) KCNQ5 K(+) channels control hippocampal synaptic inhibition and fast network oscillations. Nat Commun 4(6):6254. https://doi.org/10.1038/ncomms7254

    Article  CAS  Google Scholar 

  23. Geiger J, Weber YG, Landwehrmeyer B, Sommer C, Lerche H (2006) Immunohistochemical analysis of KCNQ3 potassium channels in mouse brain. Neurosci Lett 400:101–104. https://doi.org/10.1016/j.neulet.2006.02.017

    Article  CAS  PubMed  Google Scholar 

  24. Goldberg-Stern H, Kaufmann R, Kivity S, Afawi Z, Heron SE (2009) Novel mutation in KCNQ2 causing benign familial neonatal seizures. Pediatr Neurol 41:367–370. https://doi.org/10.1016/j.pediatrneurol.2009.05.009

    Article  PubMed  Google Scholar 

  25. Goto A, Ishii A, Shibata M, Ihara Y, Cooper EC, Hirose S (2019) Characteristics of KCNQ2 variants causing either benign neonatal epilepsy or developmental and epileptic encephalopathy. Epilepsia 60:1870–1880. https://doi.org/10.1111/epi.16314

    Article  CAS  PubMed  Google Scholar 

  26. Greene DL, Kosenko A, Hoshi N (2018) Attenuating M-current suppression in vivo by a mutant Kcnq2 gene knock-in reduces seizure burden and prevents status epilepticus-induced neuronal death and epileptogenesis. Epilepsia 59:1908–1918. https://doi.org/10.1111/epi.14541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grinton BE, Heron SE, Pelekanos JT, Zuberi SM, Kivity S, Afawi Z, Williams TC, Casalaz DM, Yendle S, Linder I, Lev D, Lerman-Sagie T, Malone S, Bassan H, Goldberg-Stern H, Stanley T, Hayman M, Calvert S, Korczyn AD, Shevell M, Scheffer IE, Mulley JC, Berkovic SF (2015) Familial neonatal seizures in 36 families: clinical and genetic features correlate with outcome. Epilepsia 56:1071–1080. https://doi.org/10.1111/epi.13020

    Article  CAS  PubMed  Google Scholar 

  28. Grozeva D, Carss K, Spasic-Boskovic O et al (2015) Targeted next-generation sequencing analysis of 1,000 individuals with intellectual disability. Hum Mutat 36:1197–1204. https://doi.org/10.1002/humu.22901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gu N, Vervaeke K, Hu H, Storm JF (2005) Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels,contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J Physiol 566:689–715. https://doi.org/10.1113/jphysiol.2005.086835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Halliwell JV, Adams PR (1982) Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res 250:71–92. https://doi.org/10.1016/0006-8993(82)90954-4

    Article  CAS  PubMed  Google Scholar 

  31. Hoshi N, Zhang JS, Omaki M, Takeuchi T, Yokoyama S, Wanaverbecq N, Langeberg LK, Yoneda Y, Scott JD, Brown DA, Higashida H (2003) AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nat Neurosci 6:564–571. https://doi.org/10.1038/nn1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Iannotti FA, Panza E, Barrese V, Viggiano D, Soldovieri MV, Taglialatela M (2010) Expression, localization, and pharmacological role of Kv7 potassium channels in skeletal muscle proliferation, differentiation, and survival after myotoxic insults. J Pharmacol Exp Ther 332:811–820. https://doi.org/10.1124/jpet.109.162800

    Article  CAS  PubMed  Google Scholar 

  33. Iannotti FA, Barrese V, Formisano L, Miceli F, Taglialatela M (2013) Specification of skeletal muscle differentiation by repressor element-1 silencing transcription factor (REST)-regulated Kv7.4 potassium channels. Mol Biol Cell 24:274–284. https://doi.org/10.1091/mbc.E11-12-1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ipavec V, Martire M, Barrese V, Taglialatela M, Currò D (2011) KV7 channels regulate muscle tone and nonadrenergic noncholinergic relaxation of the rat gastric fundus. Pharmacol Res 64:397–409. https://doi.org/10.1016/j.phrs.2011.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jensen MO, Jogini V, Borhani DW, Leffler AE, Dror RO, Shaw DE (2012) Mechanism of voltage gating in potassium channels. Science 336:229–233. https://doi.org/10.1126/science.1216533

    Article  CAS  PubMed  Google Scholar 

  36. Jentsch TJ (2000) Neuronal KCNQ potassium channels: physiology and role in disease. Nat Rev Neurosci 1:21–30. https://doi.org/10.1038/35036198

    Article  CAS  PubMed  Google Scholar 

  37. Jepps TA, Greenwood IA, Moffatt JD, Sanders KM, Ohya S (2009) Molecular and functional characterization of Kv7 K+ channel in murine gastrointestinal smooth muscles. Am J Physiol Gastrointest Liver Physiol 297:G107–G115. https://doi.org/10.1152/ajpgi.00057.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jepps TA, Chadha PS, Davis AJ, Harhun MI, Cockerill GW, Olesen SP, Hansen RS, Greenwood IA (2011) Downregulation of Kv7.4 channel activity in primary and secondary hypertension. Circulation 124:602–611. https://doi.org/10.1161/CIRCULATIONAHA.111.032136

    Article  CAS  PubMed  Google Scholar 

  39. Kanaumi T, Takashima S, Iwasaki H, Itoh M, Mitsudome A, Hirose S (2008) Developmental changes in KCNQ2 and KCNQ3 expression in human brain: possible contribution to the age-dependent etiology of benign familial neonatal convulsions. Brain Dev 30:362–369. https://doi.org/10.1016/j.braindev.2007.11.003

    Article  PubMed  Google Scholar 

  40. Kato M, Yamagata T, Kubota M, Arai H, Yamashita S, Nakagawa T, Fujii T, Sugai K, Imai K, Uster T, Chitayat D, Weiss S, Kashii H, Kusano R, Matsumoto A, Nakamura K, Oyazato Y, Maeno M, Nishiyama K, KoderaH NM, Tsurusaki Y, Miyake N, Saito K, Hayasaka K, Matsumoto N, Saitsu H (2013) Clinical spectrum of early onset epilepticencephalopathies caused by KCNQ2 mutation. Epilepsia 54:1282–1287. https://doi.org/10.1111/epi.12200

    Article  CAS  PubMed  Google Scholar 

  41. Kim KS, Duignan KM, Hawryluk JM, Soh H, Tzingounis AV (2016) The voltage activation of cortical KCNQ channels depends on global PIP2 levels. Biophys J 110:1089–1098. https://doi.org/10.1016/j.bpj.2016.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim EC, Patel J, Zhang J, Soh H, Rhodes JS, Tzingounis AV, Chung HJ (2019) Heterozygous loss of epilepsy gene KCNQ2 alters social, repetitive and exploratory behaviors. Genes Brain Behav J 19:e12599. https://doi.org/10.1111/gbb.12599

    Article  CAS  Google Scholar 

  43. Kothur K, Holman K, Farnsworth E, Ho G, Lorentzos M, Troedson C, Gupta S, Webster R, Procopis PG, Menezes MP, Antony J, Ardern-Holmes S, Dale RC, Christodoulou J, Gill D, Bennetts B (2018) Diagnostic yield of targeted massively parallel sequencing in children with epileptic encephalopathy. Seizure. 59:132–140. https://doi.org/10.1016/j.seizure.2018.05.005

    Article  PubMed  Google Scholar 

  44. Kubisch C, Schroeder BC, Friedrich T, Lütjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ (1999) KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96:437–446. https://doi.org/10.1016/s0092-8674(00)80556-5

    Article  CAS  PubMed  Google Scholar 

  45. Kullmann DM (2008) Benign neonatal convulsions and spontaneous network activity in the developing brain: is there a link? J Physiol 586:5281. https://doi.org/10.1113/jphysiol.2008.164541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lauritano A, Moutton S, Longobardi E, Tran Mau-Them F, Laudati G, Nappi P, Soldovieri MV, Ambrosino P, Cataldi M, Jouan T, Lehalle D, Maurey H, Philippe C, Miceli F, Vitobello A, Taglialatela M (2019) A novel homozygous KCNQ3 loss-of-function variant causes non-syndromic intellectual disability and neonatal-onset pharmacodependent epilepsy. Epilepsia Open 4:464–475. https://doi.org/10.1002/epi4.12353

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lehman A, Thouta S, Mancini GM, Naidu S, van Slegtenhorst M, McWalter K, Person R, Mwenifumbo J, Salvarinova R, CAUSES Study; EPGEN Study, Guella I, MB MK, Datta A, Connolly MB, Kalkhoran SM, Poburko D, Friedman JM, Farrer MJ, Demos M, Desai S, Claydon T (2017) Loss-of-function and gain-of-function mutations in KCNQ5 cause intellectual disability or epileptic encephalopathy. Am J Hum Genet 101:65–74. https://doi.org/10.1016/j.ajhg.2017.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lerche C, Scherer CR, Seebohm G, Derst C, Wei AD, Busch AE, Steinmeyer K (2000) Molecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M-current diversity. J Biol Chem 275:22395–22400. https://doi.org/10.1074/jbc.M002378200

    Article  CAS  PubMed  Google Scholar 

  49. Li Y, Gamper N, Hilgemann DW, Shapiro MS (2005) Regulation of Kv7 (KCNQ) K+ channel open probability by phosphatidylinositol 4,5-bisphosphate. J Neurosci 25:9825–9835. https://doi.org/10.1523/JNEUROSCI.2597-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450:376–382. https://doi.org/10.1038/nature06265

    Article  CAS  PubMed  Google Scholar 

  51. Luisi R, Panza E, Barrese V, Iannotti FA, Viggiano D, Secondo A, Canzoniero LM, Martire M, Annunziato L, Taglialatela M (2009) Activation of pre-synaptic M-type K+ channels inhibits [3H]D-aspartate release by reducing Ca2+ entry through P/Q-type voltage-gated Ca2+ channels. J Neurochem 109:168–181. https://doi.org/10.1111/j.1471-4159.2009.05945.x

    Article  CAS  PubMed  Google Scholar 

  52. Lykke-Andersen S, Jensen TH (2015) Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol 16:665–677.23. https://doi.org/10.1038/nrm4063

    Article  CAS  PubMed  Google Scholar 

  53. Mackie AR, Byron KL (2008) Cardiovascular KCNQ (Kv7) potassium channels: physiological regulators and new targets for therapeutic intervention. Mol Pharmacol 74:1171–1179. https://doi.org/10.1124/mol.108.049825

    Article  CAS  PubMed  Google Scholar 

  54. Marguet SL, Le-Schulte VT, Merseburg A, Neu A, Eichler R, Jakovcevski I, Ivanov A, Hanganu-Opatz IL, Bernard C, Morellini F, Isbrandt D (2015) Treatment during a vulnerable developmental period rescues a genetic epilepsy. Nat Med 21:1436–1444. https://doi.org/10.1038/nm.3987

    Article  CAS  PubMed  Google Scholar 

  55. Martire M, Castaldo P, D'Amico M, Preziosi P, Annunziato L, Taglialatela M (2004) M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals. J Neurosci 24:592–597. https://doi.org/10.1523/JNEUROSCI.3143-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McRae JF, Clayton S, Fitzgerald TW et al (2017) Prevalence and architecture of de novo mutations in developmental disorders. Nature 542:433–438. https://doi.org/10.1038/nature21062

    Article  CAS  Google Scholar 

  57. Miceli F, Soldovieri MV, Lugli L, Bellini G, Ambrosino P, Migliore M, del Giudice EM, Ferrari F, Pascotto A, Taglialatela M (2009) Neutralization of a unique, negatively-charged residue in the voltage sensor of K V 7.2 subunits in a sporadic case of benign familial neonatal seizures. Neurobiol Dis 34:501–510. https://doi.org/10.1016/j.nbd.2009.03.009

    Article  CAS  PubMed  Google Scholar 

  58. Miceli F, Soldovieri MV, Ambrosino P, Barrese V, Migliore M, Cilio MR, Taglialatela M (2013) Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K(v)7.2 potassium channel subunits. PNAS 110:4386–4391. https://doi.org/10.1073/pnas.1216867110

    Article  PubMed  Google Scholar 

  59. Miceli F, Soldovieri MV, Ambrosino P, De Maria M, Migliore M, Migliore R, Taglialatela M (2015) Early-onset epileptic encephalopathy caused by gain-of-function mutations in the voltage sensor of Kv7.2 and Kv7.3 potassium channel subunits. J Neurosci 35:3782–3793. https://doi.org/10.1523/JNEUROSCI.4423-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miceli F, Striano P, Soldovieri MV, Fontana A, Nardello R, Robbiano A, Bellini G, Elia M, Zara F, Taglialatela M, Mangano S (2015) A novel KCNQ3 mutation in familial epilepsy with focal seizures and intellectual disability. Epilepsia 56:e15–e20. https://doi.org/10.1111/epi.12887

    Article  CAS  PubMed  Google Scholar 

  61. Miceli F, Soldovieri MV, Nishtha J et al (2017) KCNQ3-related disorders. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews® [Internet]. University of Washington, Seattle

    Google Scholar 

  62. Miceli F, Soldovieri MV, Joshi N, Weckhuysen S, Cooper E, Taglialatela M (2018) KCNQ2-related disorders. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews® [Internet]. Seattle University of Washington

  63. Miceli F, Soldovieri MV, Ambrosino P, Manocchio L, Mosca I, Taglialatela M (2018) Pharmacological targeting of neuronal Kv7.2/3 channels: a focus on chemotypes and receptor sites. Curr Med Chem 25:2637–2660. https://doi.org/10.2174/0929867324666171012122852

    Article  CAS  PubMed  Google Scholar 

  64. Milh M, Lacoste C, Cacciagli P, Abidi A, Sutera-Sardo J, Tzelepis I, Colin E, Badens C, Afenjar A, Dieux Coeslier A, Dailland T, Lesca G, Philip N, Villard L (2015) Variable clinical expression in patients with mosaicism for KCNQ2 mutations. Am J Med Genet A 167A:2314–2318. https://doi.org/10.1002/ajmg.a.37152

    Article  CAS  PubMed  Google Scholar 

  65. Milh M, Roubertoux P, Biba N, Chavany J, Spiga Ghata A, Fulachier C, Collins SC, Wagner C, Roux JC, Yalcin B, Félix MS, Molinari F, Lenck-Santini PP, Villard L (2020) A knock-in mouse model for KCNQ2-related epileptic encephalopathy displays spontaneous generalized seizures and cognitive impairment. Epilepsia. https://doi.org/10.1111/epi.16494

  66. Millichap JJ, Park KL, Tsuchida T, Ben-Zeev B, Carmant L, Flamini R, Joshi N, Levisohn PM, Marsh E, Nangia S, Narayanan V, Ortiz-Gonzalez XR, Patterson MC, Pearl PL, Porter B, Ramsey K, McGinnis EL, Taglialatela M, Tracy M, Tran B, Venkatesan C, Weckhuysen S, Cooper EC (2016) KCNQ2 encephalopathy: features, mutational hot spots, and ezogabine treatment of 11 patients. Neurol Genet 2:e96. https://doi.org/10.1212/NXG.0000000000000096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Millichap JJ, Miceli F, De Maria M, Keator C, Joshi N, Tran B, Soldovieri MV, Ambrosino P, Shashi V, Mikati MA, Cooper EC, Taglialatela M (2017) Infantile spasms and encephalopathy without preceding neonatal seizures caused by KCNQ2 R198Q, a gain-of-function variant. Epilepsia 58:e10–e15. https://doi.org/10.1111/epi.13601

    Article  CAS  PubMed  Google Scholar 

  68. Mulkey SB, Ben-Zeev B, Nicolai J, Carroll JL, Grønborg S, Jiang YH, Joshi N, Kelly M, Koolen DA, Mikati MA, Park K, Pearl PL, Scheffer IE, Spillmann RC, Taglialatela M, Vieker S, Weckhuysen S, Cooper EC, Cilio MR (2017) Neonatal nonepileptic myoclonus is a prominent clinical feature of KCNQ2 gain-of-function variants R201C and R201H. Epilepsia 58:436–445. https://doi.org/10.1111/epi.13676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Niday Z, Tzingounis AV (2018) Potassium channel gain of function in epilepsy: an unresolved paradox. Neuroscientis 24:368–380. https://doi.org/10.1177/1073858418763752

    Article  CAS  Google Scholar 

  70. Okada M, Zhu G, Hirose S, Ito KI, Murakami T, Wakui M, Kaneko S (2003) Age-dependent modulation of hippocampal excitability by KCNQ-channels. Epilepsy Res 53:81–94. https://doi.org/10.1016/s0920-1211(02)00249-8

    Article  CAS  PubMed  Google Scholar 

  71. Orhan G, Bock M, Schepers D, Ilina EI, Reichel SN, Löffler H, Jezutkovic N, Weckhuysen S, Mandelstam S, Suls A, Danker T, Guenther E, Scheffer IE, De Jonghe P, Lerche H, Maljevic S (2014) Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann Neurol 75:382–394. https://doi.org/10.1002/ana.24080

    Article  CAS  PubMed  Google Scholar 

  72. Ostacolo C, Miceli F, Di Sarno V, Nappi P, Iraci N, Soldovieri MV, Ciaglia T, Ambrosino P, Vestuto V, Lauritano A, Musella S, Pepe G, Basilicata MG, Manfra M, Perinelli DR, Novellino E, Bertamino A, Gomez-Monterrey IM, Campiglia P, Taglialatela M (2020) Synthesis and pharmacological characterization of conformationally restricted retigabine analogues as novel neuronal Kv7 channel activators. J Med Chem 63:163–185. https://doi.org/10.1021/acs.jmedchem.9b00796

    Article  CAS  PubMed  Google Scholar 

  73. Pan Z, Kao T, Horvath Z, Lemos J, Sul JY, Cranstoun SD, Bennett V, Scherer SS, Cooper EC (2006) A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J Neurosci 26:2599–2613. https://doi.org/10.1523/JNEUROSCI.4314-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Peretz A, Sheinin A, Yue C, Degani-Katzav N, Gibor G, Nachman R, Gopin A, Tam E, Shabat D, Yaari Y, Attali B (2007) Pre- and postsynaptic activation of M channels by a novel opener dampens neuronal firing and transmitter release. J Neurophysiol 97:283–295. https://doi.org/10.1152/jn.00634.2006

    Article  CAS  PubMed  Google Scholar 

  75. Peters HC, Hu H, Pongs O, Storm JF, Isbrandt D (2005) Conditional transgenic suppression of M channels in mouse brain reveals functionsin neuronal excitability, resonance and behavior. Nat Neurosci 8:51–60. https://doi.org/10.1038/nn1375

    Article  CAS  PubMed  Google Scholar 

  76. Plouin P (1994) Benign familial neonatal convulsions. In: Malafosse A, Hirsch E, Marescaux C, Broglin D, Bernasconi R (ed) Idiopathic generalized epilepsies: clinical, experimental and genetic aspects. London John Libbey, p. 39–44

  77. Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, Albrecht B, Bartholdi D, Beygo J, Di Donato N, Dufke A, Cremer K, Hempel M, Horn D, Hoyer J, Joset P, Röpke A, Moog U, Riess A, Thiel CT, Tzschach A, Wiesener A, Wohlleber E, Zweier C, Ekici AB, Zink AM, Rump A, Meisinger C, Grallert H, Sticht H, Schenck A, Engels H, Rappold G, Schröck E, Wieacker P, Riess O, Meitinger T, Reis A, Strom TM (2012) Range of genetic mutations associated with severe nonsyndromic sporadic intellectual disability: an exome sequencing study. Lancet 380:1674–1682. https://doi.org/10.1016/S0140-6736(12)61480-9

    Article  CAS  PubMed  Google Scholar 

  78. Regev N, Degani-Katzav N, Korngreen A, Etzioni A, Siloni S, Alaimo A, Chikvashvili D, Villarroel A, Attali B, Lotan I (2009) Selective interaction of syntaxin 1A with KCNQ2: possible implications for specific modulation of presynaptic activity. PLoS One 4:e6586. https://doi.org/10.1371/journal.pone.0006586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, ACMG Laboratory Quality Assurance Committee (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  80. Robbins J, Passmore GM, Abogadie FC, Reilly JM, Brown DA (2013) Effects of KCNQ2 gene truncation on M-type Kv7 potassium currents. PLoS One 8:e71809. https://doi.org/10.1371/journal.pone.0071809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Robinson RB, Sigelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480. https://doi.org/10.1146/annurev.physiol.65.092101.142734

    Article  CAS  PubMed  Google Scholar 

  82. Rosti G, Tassano E, Bossi S, Divizia MT, Ronchetto P, Servetti M, Lerone M, Pisciotta L, Mancardi MM, Veneselli E, Puliti A (2019) Intragenic duplication of KCNQ5 gene results in aberrant splicing leading to a premature termination codon in a patient with intellectual disability. Eur J Med Genet 62:103555. https://doi.org/10.1016/j.ejmg.2018.10.007

    Article  PubMed  Google Scholar 

  83. Roura-Ferrer M, Etxebarria A, Solé L, Oliveras A, Comes N, Villarroel A, Felipe A (2009) Functional implications of KCNE subunit expression for the Kv7.5 (KCNQ5) channel. Cell Physiol Biochem 24:325–334. https://doi.org/10.1159/000257425

    Article  CAS  PubMed  Google Scholar 

  84. Sadewa AH, Sasongko TH, Gunadi LMJ, Daikoku K, Yamamoto A, Yamasaki T, Tanaka S, Matsuo M, Nishio H (2008) Germ-line mutation of KCNQ2, p.R213W, in a Japanese family with benign familial neonatal convulsion. Pediatr Int 50:167–171. https://doi.org/10.1111/j.1442-200X.2008.02539.x

    Article  CAS  PubMed  Google Scholar 

  85. Safiulina VF, Zacchi P, Taglialatela M, Yaari Y, Cherubini E (2008) Low expression of Kv7/M channels facilitates intrinsic and network bursting in the developing rat hippocampus. J Physiol 586:5437–5453. https://doi.org/10.1113/jphysiol.2008.156257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Saitsu H, Kato M, Koide A, Goto T, Fujita T, Nishiyama K, Tsurusaki Y, Doi H, Miyake N, Hayasaka K, Matsumoto N (2012) Whole exome sequencing identifies KCNQ2 mutations in Ohtahara syndrome. Ann Neurol 72:298–300. https://doi.org/10.1002/ana.23620

    Article  CAS  PubMed  Google Scholar 

  87. Sands TT, Miceli F, Lesca G, Beck AE, Sadleir LG, Arrington DK, Schönewolf-Greulich B, Moutton S, Lauritano A, Nappi P, Soldovieri MV, Scheffer IE, Mefford HC, Stong N, Heinzen EL, Goldstein DB, Perez AG, Kossoff EH, Stocco A, Sullivan JA, Shashi V, Gerard B, Francannet C, Bisgaard AM, Tümer Z, Willems M, Rivier F, Vitobello A, Thakkar K, Rajan DS, Barkovich AJ, Weckhuysen S, Cooper EC, Taglialatela M, Cilio MR (2019) Autism and developmental disability caused by KCNQ3 gain-of-function variants. Ann Neurol 86:181–192. https://doi.org/10.1002/ana.25522

    Article  CAS  PubMed  Google Scholar 

  88. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996) Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384:80–83. https://doi.org/10.1038/384080a0

    Article  CAS  PubMed  Google Scholar 

  89. Schroeder BC, Kubisch C, Stein V, Jentsch TJ (1998) Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 396:687–690. https://doi.org/10.1038/25367

    Article  CAS  PubMed  Google Scholar 

  90. Schroeder BC, Hechenberger M, Weinreich F, Kubisch C, Jentsch TJ (2000) KCNQ5, a novel potassium canne broadly expressed in brain, mediates M-type currents. J Biol Chem 275:24089–24095. https://doi.org/10.1074/jbc.M003245200

    Article  CAS  PubMed  Google Scholar 

  91. Sharawat IK, Kasinathan A, Sahu JK, Sankhyan N (2019) Response to carbamazepine in KCNQ2 related early infantile epileptic encephalopathy. Indian J Pediatr 86:301–302. https://doi.org/10.1007/s12098-018-2796-8

    Article  PubMed  Google Scholar 

  92. Sicca F, Imbrici P, D'Adamo MC, Moro F, Bonatti F, Brovedani P, Grottesi A, Guerrini R, Masi G, Santorelli FM, Pessia M (2011) Autism with seizures and intellectual disability: possible causative role of gain-of-function of the inwardly-rectifying K+ channel Kir4.1. Neurobiol Dis 43:239–247. https://doi.org/10.1016/j.nbd.2011.03.016

    Article  CAS  PubMed  Google Scholar 

  93. Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R, Ronen GM, Bjerre I, Quattlebaum T, Murphy JV, McHarg ML, Gagnon D, Rosales TO, Peiffer A, Anderson VE, Leppert M (1998) A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 18:25–29. https://doi.org/10.1038/ng0198-25

    Article  CAS  PubMed  Google Scholar 

  94. Singh NA, Westenskow P, Charlier C, Pappas C, Leslie J, Dillon J, Anderson VE, Sanguinetti MC, Leppert MF (2003) KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain 126:2726–2737. https://doi.org/10.1093/brain/awg286

    Article  PubMed  Google Scholar 

  95. Singh NA, Otto JF, Dahle EJ, Pappas C, Leslie JD, Vilaythong A, Noebels JL, White HS, Wilcox KS, Leppert MF (2008) Mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsions show seizures and neuronal plasticity without synaptic reorganization. J Physiol 586:3405–3423. https://doi.org/10.1113/jphysiol.2008.154971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Soh H, Pant R, LoTurco JJ, Tzingounis AV (2014) Conditional deletions of epilepsy-associated KCNQ2 and KCNQ3 channels from cerebral cortex cause differential effects on neuronal excitability. J Neurosci 34:5311–5321. https://doi.org/10.1523/JNEUROSCI.3919-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Soh H, Park S, Ryan K, Springer K, Maheshwari A, Tzingounis AV (2018) Deletion of KCNQ2/3 potassium channels from PV+ interneurons leads to homeostatic potentiation of excitatory transmission. Elife 1(7):e38617. https://doi.org/10.7554/eLife.38617

    Article  Google Scholar 

  98. Soldovieri MV, Castaldo P, Iodice L, Miceli F, Barrese V, Bellini G, Miraglia del Giudice E, Pascotto A, Bonatti S, Annunziato L, Taglialatela M (2006) Decreased subunit stability as a novel mechanism for potassium current impairment by a KCNQ2 C-terminus mutation causing benign familial neonatal convulsions. J Biol Chem 281:418–428. https://doi.org/10.1074/jbc.M510980200

    Article  CAS  PubMed  Google Scholar 

  99. Soldovieri MV, Miceli F, Taglialatela M (2011) Driving with no brakes: molecular pathophysiology of Kv7 potassium channels. Physiology (Bethesda) 26:365–376. https://doi.org/10.1152/physiol.00009.2011

    Article  CAS  Google Scholar 

  100. Soldovieri MV, Boutry-Kryza N, Milh M, Doummar D, Heron B, Bourel E, Ambrosino P, Miceli F, De Maria M, Dorison N, Auvin S, Echenne B, Oertel J, Riquet A, Lambert L, Gerard M, Roubergue A, Calender A, Mignot C, Taglialatela M, Lesca G (2014) Novel KCNQ2 and KCNQ3 mutations in a large cohort of families with benign neonatal epilepsy: first evidence for an altered channel regulation by syntaxin-1A. Hum Mutat 35(3):356–367. https://doi.org/10.1002/humu.22500

    Article  CAS  PubMed  Google Scholar 

  101. Soldovieri MV, Ambrosino P, Mosca I, De Maria M, Moretto E, Miceli F, Alaimo A, Iraci N, Manocchio L, Medoro A, Passafaro M, Taglialatela M (2016) Early-onset epileptic encephalopathy caused by a reduced sensitivity of Kv7.2 potassium channels to phosphatidylinositol 4,5-bisphosphate. Sci Rep 6:38167. https://doi.org/10.1038/srep38167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Soldovieri MV, Ambrosino P, Mosca I, Miceli F, Franco C, Canzoniero LMT, Kline-Fath B, Cooper EC, Venkatesan C, Taglialatela M (2019) Epileptic encephalopathy in a patient with a novel variant in the Kv7.2 S2 Transmembrane segment: clinical, genetic, and functional features. Int J Mol Sci 20(14):E3382. https://doi.org/10.3390/ijms20143382

    Article  CAS  PubMed  Google Scholar 

  103. Svalø J, Bille M, Parameswaran Theepakaran N, Sheykhzade M, Nordling J, Bouchelouche P (2013) Bladder contractility is modulated by Kv7 channels in pig detrusor. Eur J Pharmacol 715:312–320. https://doi.org/10.1016/j.ejphar.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  104. Tinel N, Lauritzen I, Chouabe C, Lazdunski M, Borsotto M (1998) The KCNQ2 potassium channel: splice variants, functional and developmental expression. Brain localization and comparison with KCNQ3. FEBS Lett 438:171–176. https://doi.org/10.1016/s0014-5793(98)01296-4

    Article  CAS  PubMed  Google Scholar 

  105. Tomonoh Y, Deshimaru M, Araki K, Miyazaki Y, Arasaki T, Tanaka Y, Kitamura H, Mori F, Wakabayashi K, Yamashita S, Saito R, Itoh M, Uchida T, Yamada J, Migita K, Ueno S, Kitaura H, Kakita A, Lossin C, Takano Y, Hirose S (2019) The kick-in system: a novel rapid knock-in strategy. PLoS One 2014 9:e88549. https://doi.org/10.1371/journal.pone.0088549

    Article  CAS  Google Scholar 

  106. Tuchman R, Cuccaro M (2011) Epilepsy and autism: neurodevelopmental perspective. Curr Neurol Neurosci Rep 11:428–434. https://doi.org/10.1007/s11910-011-0195-x

    Article  PubMed  Google Scholar 

  107. Tzingounis AV, Nicoll RA (2008) Contribution of KCNQ2 and KCNQ3 to the medium and slow after hyperpolarizationcurrents. PNAS 105:19974–19979. https://doi.org/10.1073/pnas.0810535105

    Article  PubMed  Google Scholar 

  108. Tzingounis AV, Heidenreich M, Kharkovets T, Spitzmaul G, Jensen HS, Nicoll RA, Jentsch TJ (2010) The KCNQ5 potassium channel mediates a component of the after hyperpolarization current in mouse hippocampus. PNAS 107:10232–10237. https://doi.org/10.1073/pnas.1004644107

    Article  PubMed  Google Scholar 

  109. Villarroel A, Taglialatela M, Bernardo-Seisdedos G, Alaimo A, Agirre J, Alberdi A, Gomis-Perez C, Soldovieri MV, Ambrosino P, Malo C, Areso P (2014) The ever changing moods of calmodulin: how structural plasticity entails transductional adaptability. J Mol Biol 426:2717–2735. https://doi.org/10.1016/j.jmb.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  110. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, Shen J, Timothy KW, Vincent GM, de Jager T, Schwartz PJ, Toubin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT (1996) Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12:17–23. https://doi.org/10.1038/ng0196-17

    Article  PubMed  Google Scholar 

  111. Watanabe H, Nagata E, Kosakai A, Nakamura M, Yokoyama M, Tanaka K, Sasai H (2000) Disruption of the epilepsy KCNQ2 gene results in neural hyperexcitability. J Neurochem 75:28–33. https://doi.org/10.1046/j.1471-4159.2000.0750028.x

    Article  CAS  PubMed  Google Scholar 

  112. Weber YG, Geiger J, Kämpchen K, Landwehrmeyer B, Sommer C, Lerche H (2006) Immunohistochemical analysis of KCNQ2 potassium channels in adult and developing mouse brain. Brain ResMar 1077:1–6. https://doi.org/10.1016/j.brainres.2006.01.023

    Article  CAS  Google Scholar 

  113. Weckhuysen S, Mandelstam S, Suls A, Audenaert D, Deconinck T, Claes LR, Deprez L, Smets K, Hristova D, Yordanova I, Jordanova A, Ceulemans B, Jansen A, Hasaerts D, Roelens F, Lagae L, Yendle S, Stanley T, Heron SE, Mulley JC, Berkovic SF, Scheffer IE, de Jonghe P (2012) KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol 71:15–25. https://doi.org/10.1002/ana.22644

    Article  CAS  PubMed  Google Scholar 

  114. Weckhuysen S, Ivanovic V, Hendrickx R, Van Coster R, Hjalgrim H, Møller RS, Grønborg S, Schoonjans AS, Ceulemans B, Heavin SB, Eltze C, Horvath R, Casara G, Pisano T, Giordano L, Rostasy K, Haberlandt E, Albrecht B, Bevot A, Benkel I, Syrbe S, Sheidley B, Guerrini R, Poduri A, Lemke JR, Mandelstam S, Scheffer I, Angriman M, Striano P, Marini C, Suls A, De Jonghe P (2013) Extending the KCNQ2 encephalopathy spectrum: clinical and neuroimaging findings in 17 patients. Neurology 81:1697–1703. https://doi.org/10.1212/01.wnl.0000435296.72400.a1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wuttke TV, Jurkat-Rott K, Paulus W, Garncarek M, Lehmann-Horn F, Lerche H (2007) Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations. Neurology 69:2045–2053. https://doi.org/10.1212/01.wnl.0000275523.95103.36

    Article  CAS  PubMed  Google Scholar 

  116. Yang Y, Beyer BJ, Otto JF, O'Brien TP, Letts VA, White HS, Frankel WN (2003) Spontaneous deletion of epilepsygene orthologs in a mutant mouse with a low electroconvulsive threshold. Hum Mol Genet 12:975–984. https://doi.org/10.1093/hmg/ddg118

    Article  CAS  PubMed  Google Scholar 

  117. Yus-Nájera E, Santana-Castro I, Villarroel A (2002) The identification and characterization of a non continuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels. J Biol Chem 277:28545–28553. https://doi.org/10.1074/jbc.M204130200

    Article  CAS  PubMed  Google Scholar 

  118. Zara F, Specchio N, Striano P, Robbiano A, Gennaro E, Paravidino R, Vanni N, Beccaria F, Capovilla G, Bianchi A, Caffi L, Cardilli V, Darra F, Bernardina BD, Fusco L, Gaggero R, Giordano L, Guerrini R, Incorpora G, Mastrangelo M, Spaccini L, Laverda AM, Vecchi M, Vanadia F, Veggiotti P, Viri M, Occhi G, Budetta M, Taglialatela M, Coviello DA, Vigevano F, Minetti C (2013) Genetic testing in benign familial epilepsies of the first year of life: clinical and diagnostic significance. Epilepsia 54:425–436. https://doi.org/10.1111/epi.12089

    Article  CAS  PubMed  Google Scholar 

  119. Zhang J, Shapiro M (2012) Activity-dependent transcriptional regulation of M-type (Kv7) K+ channels by AKAP79/150-mediated NFAT actions. Neuron 76:1133–1146. https://doi.org/10.1016/j.neuron.2012.10.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang H, Craciun LC, Mirshahi T, Rohács T, Lopes CMB, Jin T, Logothetis DE (2003) PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 37:963–975. https://doi.org/10.1016/S0896-6273(03)00125-9

    Article  CAS  PubMed  Google Scholar 

  121. Zhou X, Ma A, Liu X, Huang C, Zhang Y, Shi R, Mao S, Geng T, Li S (2006) Infantile seizures and other epileptic phenotypes in a Chinese family with a missense mutation of KCNQ2. Eur J Pediatr 165:691–695. https://doi.org/10.1007/s00431-006-0157-5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Work from the authors’ laboratories has been supported by the Telethon Foundation (grant number GGP15113) and by the Italian Ministry for University and Research (PRIN 2017ALCR7C) to MT and MVS, the Italian Ministry for University and Research (Project Scientific Independence of Researchers 2014 RBSI1444EM; PRIN 2017YH3SXK) and the University of Naples “Federico II” and Compagnia di San Paolo in the frame of Program STAR “Sostegno Territoriale alle Attività di Ricerca” (project number 6-CSP-UNINA-120) to FM, and the Italian Ministry of Health Ricerca Finalizzata Giovani Ricercatori 2016 (Project GR-2016-02363337 to MVS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Taglialatela.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is published as part of the Special Issue on “Channelopathies: from mutation to diseases.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nappi, P., Miceli, F., Soldovieri, M.V. et al. Epileptic channelopathies caused by neuronal Kv7 (KCNQ) channel dysfunction. Pflugers Arch - Eur J Physiol 472, 881–898 (2020). https://doi.org/10.1007/s00424-020-02404-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02404-2

Keywords

Navigation