Skip to main content

Advertisement

Log in

Evolutionary dynamics of metazoan TRP channels

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Transient receptor potential (TRP) channels are unusual among cation channels because of their diverse cation selectivities and activation mechanisms. TRP channels thus play major roles in various sensory perceptions by functioning as multimodal signal integrators. Some TRP subfamily members are also implicated in acute and chronic pain and inflammation. So far, most TRP channel studies have been targeted to human and model organisms within a limited evolutionary context. Classification of TRP channels in various animal genomes has revealed extensive gene gain and loss events across animal species. Furthermore, the chemical activation profiles of some orthologous TRP channels were different between species such as human and mouse. Amino acid substitutions must underlie such differences, and the crucial amino acid residues have been identified in some cases. These changes represent the evolution of TRP channels at the amino acid sequence level. There is also evidence that TRP channels have obtained species-diversity through alternative splicing and possibly cis-regulatory element mutations. All of the above demonstrate the dynamic and plastic evolutionary history of metazoan TRP channels at multiple levels, possibly in conjunction with the specific habitats and life histories of individual species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Audo I, Kohl S, Leroy BP, Munier FL, Guillonneau X, Mohand-Said S, Bujakowska K, Nandrot EF, Lorenz B, Preising M, Kellner U, Renner AB, Bernd A, Antonio A, Moskova-Doumanova V, Lancelot M-E, Poloschek CM, Drumare I, Defoort-Dhellemmes S, Wissinger B, Leveillard T, Hamel CP, Schorderet DF, De Baere E, Berger W, Jacobson SG, Zrenner E, Sahel J-A, Bhattacharya SS, Zeitz C (2009) TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 85:720–729. doi:10.1016/j.ajhg.2009.10.013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Auer-Grumbach M, Olschewski A, Papic L, Kremer H, McEntagart ME, Uhrig S, Fischer C, Froehlich E, Balint Z, Tang B, Strohmaier H, Lochmueller H, Schlotter-Weigel B, Senderek J, Krebs A, Dick KJ, Petty R, Longman C, Anderson NE, Padberg GW, Schelhaas HJ, van Ravenswaaij-Arts CMA, Pieber TR, Crosby AH, Guelly C (2010) Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet 42:160–U196. doi:10.1038/ng.508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, Slobodeniuc V, Kutter C, Watt S, Colak R, Kim T, Misquitta-Ali CM, Wilson MD, Kim PM, Odom DT, Frey BJ, Blencowe BJ (2012) The evolutionary landscape of alternative splicing in vertebrate species. Science 338:1587–1593. doi:10.1126/science.1230612

    Article  CAS  PubMed  Google Scholar 

  4. Boenigk J, Arndt H (2002) Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Anton Leeuw Int J Gen Mol Microbiol 81:465–480. doi:10.1023/a:1020509305868

    Article  Google Scholar 

  5. Cai X (2008) Unicellular Ca(2+) signaling 'toolkit' at the origin of Metazoa. Mol Biol Evol 25:1357–1361. doi:10.1093/molbev/msn077

    Article  CAS  PubMed  Google Scholar 

  6. Cai X, Clapham DE (2012) Ancestral Ca2+ signaling machinery in early animal and fungal evolution. Mol Biol Evol 29:91–100. doi:10.1093/molbev/msr149

    Article  PubMed Central  PubMed  Google Scholar 

  7. Cao E, Liao M, Cheng Y, Julius D (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504:113. doi:10.1038/nature12823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Chen J, Kang D, Xu J, Lake M, Hogan JO, Sun C, Walter K, Yao B, Kim D (2013) Species differences and molecular determinant of TRPA1 cold sensitivity. Nat Commun 4. doi:10.1038/ncomms3501

  9. Chen J, Zhang X-F, Kort ME, Huth JR, Sun C, Miesbauer LJ, Cassar SC, Neelands T, Scott VE, Moreland RB, Reilly RM, Hajduk PJ, Kym PR, Hutchins CW, Faltynek CR (2008) Molecular determinants of species-specific activation or blockade of TRPA1 channels. J Neurosci 28:5063–5071. doi:10.1523/jneurosci. 0047-08.2008

    Article  CAS  PubMed  Google Scholar 

  10. Colletti GA, Kiselyov K (2011) TRPML1. Transient receptor potential channels. Adv Exp Med Biol 704:209–219. doi:10.1007/978-94-007-0265-3_11

    Article  CAS  PubMed  Google Scholar 

  11. Cordero-Morales JF, Gracheva EO, Julius D (2011) Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proc Natl Acad Sci U S A 108:E1184–E1191. doi:10.1073/pnas.1114124108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Damann N, Voets T, Nilius B (2008) TRPs in our senses. Curr Biol 18:R880–R889. doi:10.1016/j.cub.2008.07.063

    Article  CAS  PubMed  Google Scholar 

  13. Deng H-X, Klein CJ, Yan J, Shi Y, Wu Y, Fecto F, Yau H-J, Yang Y, Zhai H, Siddique N, Hedley-Whyte ET, DeLong R, Martina M, Dyck PJ, Siddique T (2010) Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 42:165–U102. doi:10.1038/ng.509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Denis V, Cyert MS (2002) Internal Ca2+ release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue. J Cell Biol 156:29–34. doi:10.1083/jcb.200111004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Effertz T, Wiek R, Goepfert MC (2011) NompC TRP channel is essential for drosophila sound receptor function. Curr Biol 21:592–597. doi:10.1016/j.cub.2011.02.048

    Article  CAS  PubMed  Google Scholar 

  16. Falardeau JL, Kennedy JC, Acierno JS, Sun M, Stahl S, Goldin E, Slaugenhaupt SA (2002) Cloning and characterization of the mouse McolnI gene reveals an alternatively spliced transcript not seen in humans. BMC Genomics 3. doi:10.1186/1471-2164-3-3

  17. Gaudet R (2008) A primer on ankyrin repeat function in TRP channels and beyond. Mol BioSyst 4:372–379. doi:10.1039/b801481g

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Gavva NR, Klionsky L, Qu YS, Shi LC, Tamir R, Edenson S, Zhang TJ, Viswanadhan VN, Toth A, Pearce LV, Vanderah TW, Porreca F, Blumberg PM, Lile J, Sun Y, Wildt K, Louis JC, Treanor JJS (2004) Molecular determinants of vanilloid sensitivity in TRPV1. J Biol Chem 279:20283–20295. doi:10.1074/jbc.M312577200

    Article  CAS  PubMed  Google Scholar 

  19. Gong ZF, Son WS, Chung YD, Kim JW, Shin DW, McClung CA, Lee Y, Lee HW, Chang DJ, Kaang BK, Cho HW, Oh U, Hirsh J, Kernan MJ, Kim CS (2004) Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila. J Neurosci 24:9059–9066. doi:10.1523/jneurosci. 1645-04.2004

    Article  CAS  PubMed  Google Scholar 

  20. Gracheva EO, Cordero-Morales JF, Gonzalez-Carcacia JA, Ingolia NT, Manno C, Aranguren CI, Weissman JS, Julius D (2011) Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats. Nature 476:88. doi:10.1038/nature10245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Gracheva EO, Ingolia NT, Kelly YM, Cordero-Morales JF, Hollopeter G, Chesler AT, Sanchez EE, Perez JC, Weissman JS, Julius D (2010) Molecular basis of infrared detection by snakes. Nature 464:1006–U1066. doi:10.1038/nature08943

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hinman A, H-h C, Bautista DM, Julius D (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A 103:19564–19568. doi:10.1073/pnas.0609598103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278. doi:10.1016/j.cell.2014.05.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Jabba S, Goyal R, Sosa-Pagan JO, Moldenhauer H, Wu J, Kalmeta B, Bandell M, Latorre R, Patapoutian A, Grandl J (2014) Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. Neuron 82:1017–1031. doi:10.1016/j.neuron.2014.04.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Jang Y, Lee Y, Kim SM, Yang YD, Jung J, Oh U (2012) Quantitative analysis of TRP channel genes in mouse organs. Arch Pharm Res 35:1823–1830. doi:10.1007/s12272-012-1016-8

    Article  CAS  PubMed  Google Scholar 

  26. Jordt SE, Julius D (2002) Molecular basis for species-specific sensitivity to "hot" chili peppers. Cell 108:421–430. doi:10.1016/s0092-8674(02)00637-2

    Article  CAS  PubMed  Google Scholar 

  27. Julius D (2013) TRP channels and pain. Annu Rev Cell Dev Biol 29(29):355–384. doi:10.1146/annurev-cellbio-101011-155833

    Article  CAS  PubMed  Google Scholar 

  28. Kang K, Panzano VC, Chang EC, Ni L, Dainis AM, Jenkins AM, Regna K, Muskavitch MAT, Garrity PA (2012) Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature 481:76–U82. doi:10.1038/nature10715

    Article  CAS  Google Scholar 

  29. Kang K, Pulver SR, Panzano VC, Chang EC, Griffith LC, Theobald DL, Garrity PA (2010) Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 464:597–U155. doi:10.1038/nature08848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Karashima Y, Damann N, Prenen J, Talavera K, Segal A, Voets T, Nilius B (2007) Bimodal action of menthol on the transient receptor potential channel TRPA1. J Neurosci 27:9874–9884. doi:10.1523/jneurosci. 2221-07.2007

    Article  CAS  PubMed  Google Scholar 

  31. Kim J, Chung YD, Park DY, Choi SK, Shin DW, Soh H, Lee HW, Son W, Yim J, Park CS, Kernan MJ, Kim C (2003) A TRPV family ion channel required for hearing in Drosophila. Nature 424:81–84. doi:10.1038/nature01733

    Article  CAS  PubMed  Google Scholar 

  32. Koettgen M (2007) TRPP2 and autosomal dominant polycystic kidney disease. Biochim Biophys Acta Mol basis Dis 1772:836–850. doi:10.1016/j.bbadis.2007.01.003

    Article  CAS  Google Scholar 

  33. Kohno K, Sokabe T, Tominaga M, Kadowaki T (2010) Honey bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes. J Neurosci 30:12219–12229. doi:10.1523/jneurosci. 2001-10.2010

    Article  CAS  PubMed  Google Scholar 

  34. Kremeyer B, Lopera F, Cox JJ, Momin A, Rugiero F, Marsh S, Woods CG, Jones NG, Paterson KJ, Fricker FR, Villegas A, Acosta N, Pineda-Trujillo NG, Diego Ramirez J, Zea J, Burley M-W, Bedoya G, Bennett DLH, Wood JN, Ruiz-Linares A (2010) A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66:671–680. doi:10.1016/j.neuron.2010.04.030

    Article  CAS  PubMed  Google Scholar 

  35. Kruse M, Schulze-Bahr E, Corfield V, Beckmann A, Stallmeyer B, Kurtbay G, Ohmert I, Schulze-Bahr E, Brink P, Pongs O (2009) Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Investig 119:2737–2744. doi:10.1172/jci38292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kunert-Keil C, Bisping F, Krueger J, Brinkmeier H (2006) Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics 7. doi:10.1186/1471-2164-7-159

  37. Landoure G, Zdebik AA, Martinez TL, Burnett BG, Stanescu HC, Inada H, Shi Y, Taye AA, Kong L, Munns CH, Choo SS, Phelps CB, Paudel R, Houlden H, Ludlow CL, Caterina MJ, Gaudet R, Kleta R, Fischbeck KH, Sumner CJ (2010) Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet 42:170–U109. doi:10.1038/ng.512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Lee Y, Lee J, Bang S, Hyun S, Kang J, Hong ST, Bae E, Kaang BK, Kim J (2005) Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster. Nat Genet 37:305–310. doi:10.1038/ng1513

    Article  CAS  PubMed  Google Scholar 

  39. Leys SP, Degnan BM (2001) Cytological basis of photoresponsive behavior in a sponge larva. Biol Bull 201:323–338. doi:10.2307/1543611

    Article  CAS  PubMed  Google Scholar 

  40. Li Z, Sergouniotis PI, Michaelides M, Mackay DS, Wright GA, Devery S, Moore AT, Holder GE, Robson AG, Webster AR (2009) Recessive mutations of the gene TRPM1 abrogate ON bipolar cell function and cause complete congenital stationary night blindness in humans. Am J Hum Genet 85:711–719. doi:10.1016/j.ajhg.2009.10.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107. doi:10.1038/nature12822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Liu L, Li Y, Wang R, Yin C, Dong Q, Hing H, Kim C, Welsh MJ (2007) Drosophila hygrosensation requires the TRP channels water witch and nanchung. Nature 450:294–U214. doi:10.1038/nature06223

    Article  CAS  PubMed  Google Scholar 

  43. Ludeman DA, Farrar N, Riesgo A, Paps J, Leys SP (2014) Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges. BMC Evol Biol 14:3. doi:10.1186/1471-2148-14-3

    Article  PubMed Central  PubMed  Google Scholar 

  44. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445:541–545. doi:10.1038/nature05544

    Article  CAS  PubMed  Google Scholar 

  45. Matsuura H, Sokabe T, Kohno K, Tominaga M, Kadowaki T (2009) Evolutionary conservation and changes in insect TRP channels. BMC Evol Biol 9:228. doi:10.1186/1471-2148-9-228

  46. Nadler MJS, Hermosura MC, Inabe K, Perraud AL, Zhu QQ, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is a Mg center dot ATP-regulated divalent cation channel required for cell viability. Nature 411:590–595. doi:10.1038/35079092

    Article  CAS  PubMed  Google Scholar 

  47. Nagatomo K, Ishii H, Yamamoto T, Nakajo K, Kubo Y (2010) The Met268Pro mutation of mouse TRPA1 changes the effect of caffeine from activation to suppression. Biophys J 99:3609–3618. doi:10.1016/j.bpj.2010.10.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Nagatomo K, Kubol Y (2008) Caffeine activates mouse TRPA1 channels but suppresses human TRPA1 channels. Proc Natl Acad Sci U S A 105:17373–17378. doi:10.1073/pnas.0809769105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Nilius B, Appendino G, Owsianik G (2012) The transient receptor potential channel TRPA1: from gene to pathophysiology. Arch Eur J Physiol 464:425–458. doi:10.1007/s00424-012-1158-z

    Article  CAS  Google Scholar 

  50. Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12. doi:10.1186/gb-2011-12-3-218

  51. Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE (2005) Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J Biol Chem 280:22540–22548. doi:10.1074/jbc.M503092200

    Article  CAS  PubMed  Google Scholar 

  52. Ohkita M, Saito S, Imagawa T, Takahashi K, Tominaga M, Ohta T (2012) Molecular cloning and functional characterization of Xenopus tropicalis frog transient receptor potential vanilloid 1 reveal its functional evolution for heat, acid, and capsaicin sensitivities in terrestrial vertebrates. J Biol Chem 287:2388–2397. doi:10.1074/jbc.M111.305698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Palmer CP, Zhou XL, Lin JY, Loukin SH, Kung C, Saimi Y (2001) A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca2 + -permeable channel in the yeast vacuolar membrane. Proc Natl Acad Sci U S A 98:7801–7805. doi:10.1073/pnas.141036198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Peng G, Shi X, Kadowaki T (2015) Evolution of TRP channels inferred by their classification in diverse animal species. Mol Phylogenet Evol 84:145–157. doi:10.1016/j.ympev.2014.06.016

  55. Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei CL, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744. doi:10.1038/ng1592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Runnels LW, Yue LX, Capham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047. doi:10.1126/science.1058519

    Article  CAS  PubMed  Google Scholar 

  57. Saito S, Banzawa N, Fukuta N, Saito CT, Takahashi K, Imagawa T, Ohta T, Tominaga M (2014) Heat and noxious chemical sensor, chicken TRPA1, as a target of bird repellents and identification of its structural determinants by multispecies functional comparison. Mol Biol Evol 31:708–722. doi:10.1093/molbev/msu001

    Article  CAS  PubMed  Google Scholar 

  58. Saito S, Fukuta N, Shingai R, Tominaga M (2011) Evolution of vertebrate transient receptor potential vanilloid 3 channels: opposite temperature sensitivity between mammals and western clawed frogs. PLoS Genet 7. doi:10.1371/journal.pgen.1002041

  59. Saito S, Nakatsuka K, Takahashi K, Fukuta N, Imagawa T, Ohta T, Tominaga M (2012) Analysis of Transient Receptor Potential Ankyrin 1 (TRPA1) in frogs and lizards illuminates both nociceptive heat and chemical sensitivities and coexpression with TRP Vanilloid 1 (TRPV1) in ancestral vertebrates. J Biol Chem 287:30743–30754. doi:10.1074/jbc.M112.362194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Saito S, Tominaga M (2015) Functional diversity and evolutionary dynamics of thermoTRP channels. Cell Calcium 57:214–221. doi:10.1016/j.ceca.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  61. Sakai T, Kasuya J, Kitamoto T, Aigaki T (2009) The Drosophila TRPA channel, painless, regulates sexual receptivity in virgin females. Genes Brain Behav 8:546–557. doi:10.1111/j.1601-183X.2009.00503.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Sato A, Sokabe T, Kashio M, Yasukochi Y, Tominaga M, Shiomi K (2014) Embryonic thermosensitive TRPA1 determines transgenerational diapause phenotype of the silkworm, Bombyx mori. Proc Natl Acad Sci U S A 111:E1249–E1255. doi:10.1073/pnas.1322134111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Sidi S, Friedrich RW, Nicolson T (2003) NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301:96–99. doi:10.1126/science.1084370

    Article  CAS  PubMed  Google Scholar 

  64. Sokabe T, Tsujiuchi S, Kadowaki T, Tominaga M (2008) Drosophila Painless is a Ca2+ -requiring channel activated by noxious heat. J Neurosci 28:9929–9938. doi:10.1523/jneurosci. 2757-08.2008

    Article  CAS  PubMed  Google Scholar 

  65. Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–U919. doi:10.1038/nature07191

    Article  CAS  PubMed  Google Scholar 

  66. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, Larroux C, Putnam NH, Stanke M, Adamska M, Darling A, Degnan SM, Oakley TH, Plachetzki DC, Zhai Y, Adamski M, Calcino A, Cummins SF, Goodstein DM, Harris C, Jackson DJ, Leys SP, Shu S, Woodcroft BJ, Vervoort M, Kosik KS, Manning G, Degnan BM, Rokhsar DS (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–U723. doi:10.1038/nature09201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Sun Y, Liu L, Ben-Shahar Y, Jacobs JS, Eberl DF, Welsh MJ (2009) TRPA channels distinguish gravity sensing from hearing in Johnston's organ. Proc Natl Acad Sci U S A 106:13606–13611. doi:10.1073/pnas.0906377106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Tang X, Platt MD, Lagnese CM, Leslie JR, Hamada FN (2013) Temperature integration at the AC thermosensory neurons in Drosophila. J Neurosci 33:894–901. doi:10.1523/jneurosci. 1894-12.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Tracey WD, Wilson RI, Laurent G, Benzer S (2003) Painless, a Drosophila gene essential for nociception. Cell 113:261–273. doi:10.1016/s0092-8674(03)00272-1

    Article  CAS  PubMed  Google Scholar 

  70. van Genderen MM, Bijveld MMC, Claassen YB, Florijn RJ, Pearring JN, Meire FM, McCall MA, Riemslag FCC, Gregg RG, Bergen AAB, Kamermans M (2009) Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. Am J Hum Genet 85:730–736. doi:10.1016/j.ajhg.2009.10.012

    Article  PubMed Central  PubMed  Google Scholar 

  71. Vazquez E, Valverde MA (2006) A review of TRP channels splicing. Semin Cell Dev Biol 17:607–617. doi:10.1016/j.semcdb.2006.11.004

    Article  CAS  PubMed  Google Scholar 

  72. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417. doi:10.1146/annurev.biochem.75.103004.142819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Voets T, Owsianik G, Janssens A, Talavera K, Nilius B (2007) TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol 3:174–182. doi:10.1038/nchembio862

    Article  CAS  PubMed  Google Scholar 

  74. Vriens J, Appendino G, Nilius B (2009) Pharmacology of vanilloid transient receptor potential cation channels. Mol Pharmacol 75:1262–1279. doi:10.1124/mol.109.055624

    Article  CAS  PubMed  Google Scholar 

  75. Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, Boettger MB, Beck GE, Englehardt RK, Carmi R, Sheffield VC (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 31:171–174. doi:10.1038/ng901

    Article  CAS  PubMed  Google Scholar 

  76. Wang CB, Hu HZ, Colton CK, Wood JD, Zhu MX (2004) An alternative splicing product of the murine trpv1 gene dominant negatively modulates the activity of TRPV1 channels. J Biol Chem 279:37423–37430. doi:10.1074/jbc.M407205200

    Article  CAS  PubMed  Google Scholar 

  77. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howel DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804. doi:10.1126/science.1106215

    Article  CAS  PubMed  Google Scholar 

  78. Wittkopp PJ, Kalay G (2012) Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 13:59–69. doi:10.1038/nrg3095

    Article  CAS  Google Scholar 

  79. Wolfgang W, Simoni A, Gentile C, Stanewsky R (2013) The Pyrexia transient receptor potential channel mediates circadian clock synchronization to low temperature cycles in Drosophila melanogaster. Proc R Soc B Biol Sci 280. doi:10.1098/rspb.2013.0959

  80. Wright DA, Li T, Yang B, Spalding MH (2014) TALEN-mediated genome editing: prospects and perspectives. Biochem J 462:15–24. doi:10.1042/bj20140295

    Article  CAS  PubMed  Google Scholar 

  81. Xiao B, Dubin AE, Bursulaya B, Viswanath V, Jegla TJ, Patapoutian A (2008) Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J Neurosci 28:9640–9651. doi:10.1523/jneurosci. 2772-08.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Xu J, Sornborger AT, Lee JK, Shen P (2008) Drosophila TRPA channel modulates sugar-stimulated neural excitation, avoidance and social response. Nat Neurosci 11:676–682. doi:10.1038/nn.2119

    Article  CAS  PubMed  Google Scholar 

  83. Yan Z, Zhang W, He Y, Gorczyca D, Xiang Y, Cheng LE, Meltzer S, Jan LY, Jan YN (2013) Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature 493:221–225. doi:10.1038/nature11685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Zeevi DA, Frumkin A, Bach G (2007) TRPML and lysosomal function. Biochim Biophys Acta Mol basis Dis 1772:851–858. doi:10.1016/j.bbadis.2007.01.004

    Article  CAS  Google Scholar 

  85. Zhong L, Bellemer A, Yan H, Honjo K, Robertson J, Hwang RY, Pitt GS, Tracey WD (2012) Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 Reveal heat-sensor domains of a ThermoTRP channel. Cell Rep 1:43–55. doi:10.1016/j.celrep.2011.11.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Zhou Y, Suzuki Y, Uchida K, Tominaga M (2013) Identification of a splice variant of mouse TRPA1 that regulates TRPA1 activity. Nat Commun 4. doi:10.1038/ncomms3399

Download references

Acknowledgments

The study on TRP channels in my laboratory has been conducted by Seiya Tsujiuchi, Hironori Matsuura, Keigo Kohno, Tomomi Morimoto (at Nagoya University), Guangda Peng, Xiaofeng Dong, Xiao Shi, Tianbang Li (at Xi’an Jiaotong-Liverpool University) in collaboration with Takaaki Sokabe, Makiko Kashio, and Makoto Tominaga (at Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences).

Compliance with ethical standards

Disclosure of potential conflicts of interest

The author’s study on TRP channels has been funded by 2012 Suzhou Science and Technology Development Planning Programme (Grant no. SYN201213). The author declares that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuhiko Kadowaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadowaki, T. Evolutionary dynamics of metazoan TRP channels. Pflugers Arch - Eur J Physiol 467, 2043–2053 (2015). https://doi.org/10.1007/s00424-015-1705-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1705-5

Keywords

Navigation