Skip to main content

Advertisement

Log in

Properties, regulation, pharmacology, and functions of the K2P channel, TRESK

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

TWIK-related spinal cord K+ channel (TRESK) is the gene product of KCNK18, the last discovered leak potassium K2P channel gene. Under resting conditions, TRESK is constitutively phosphorylated at two regulatory regions. Protein kinase A (PKA) and microtubule affinity-regulating (MARK) kinases can be applied in experiments to phosphorylate these sites of TRESK expressed in Xenopus oocytes, respectively. Upon generation of a calcium signal, TRESK is dephosphorylated and thereby activated by calcineurin. In this process, the binding of calcineurin to the channel by non-catalytic interacting sites is essential. The phosphorylation/dephosphorylation regulatory process is modified by 14-3-3 proteins. Human, but not murine TRESK is also activated by protein kinase C. TRESK is expressed most abundantly in sensory neurons of the dorsal root ganglia (DRG) and trigeminal ganglia, and the channel modifies certain forms of nociceptive afferentation. In a large pedigree, a dominant negative mutant TRESK allele was found to co-segregate perfectly with migraine phenotype. While this genetic defect may be responsible only for a very small fraction of migraine cases, specific TRESK activation is expected to exert beneficial effect in common forms of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Albin KC, Simons CT (2010) Psychophysical evaluation of a sanshool derivative (alkylamide) and the elucidation of mechanisms subserving tingle. PLoS One 5:e9520

    Article  PubMed Central  PubMed  Google Scholar 

  2. Andres-Enguix I, Shang L, Stansfeld PJ, Morahan JM, Sansom MS, Lafreniere RG, Roy B, Griffiths LR, Rouleau GA, Ebers GC, Cader ZM, Tucker SJ (2012) Functional analysis of missense variants in the TRESK (KCNK18) K+ channel. Sci Rep 2:237–243

    Article  PubMed Central  PubMed  Google Scholar 

  3. Anttila V, Winsvold BS, Gormley P, Kurth T, Bettella F, McMahon G, Kallela M, Malik R, De VB, Terwindt G, Medland SE, Todt U, McArdle WL, Quaye L, Koiranen M, Ikram MA, Lehtimaki T, Stam AH, Ligthart L, Wedenoja J, Dunham I, Neale BM, Palta P, Hamalainen E, Schurks M, Rose LM, Buring JE, Ridker PM, Steinberg S, Stefansson H, Jakobsson F, Lawlor DA, Evans DM, Ring SM, Farkkila M, Artto V, Kaunisto MA, Freilinger T, Schoenen J, Frants RR, Pelzer N, Weller CM, Zielman R, Heath AC, Madden PA, Montgomery GW, Martin NG, Borck G, Gobel H, Heinze A, Heinze-Kuhn K, Williams FM, Hartikainen AL, Pouta A, van den Ende J, Uitterlinden AG, Hofman A, Amin N, Hottenga JJ, Vink JM, Heikkila K, Alexander M, Muller-Myhsok B, Schreiber S, Meitinger T, Wichmann HE, Aromaa A, Eriksson JG, Traynor BJ, Trabzuni D, Rossin E, Lage K, Jacobs SB, Gibbs JR, Birney E, Kaprio J, Penninx BW, Boomsma DI, Van DC, Raitakari O, Jarvelin MR, Zwart JA, Cherkas L, Strachan DP, Kubisch C, Ferrari MD, Van den Maagdenberg AM, Dichgans M, Wessman M, Smith GD, Stefansson K, Daly MJ, Nyholt DR, Chasman DI, Palotie A (2013) Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat Genet 45:912–917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bautista DM, Sigal YM, Milstein AD, Garrison JL, Zorn JA, Tsuruda PR, Nicoll RA, Julius D (2008) Pungent agents from Szechuan peppers excite sensory neurons by inhibiting two-pore potassium channels. Nat Neurosci 11:772–779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bobak N, Bittner S, Andronic J, Hartmann S, Muhlpfordt F, Schneider-Hohendorf T, Wolf K, Schmelter C, Gobel K, Meuth P, Zimmermann H, Doring F, Wischmeyer E, Budde T, Wiendl H, Meuth SG, Sukhorukov VL (2011) Volume regulation of murine T lymphocytes relies on voltage-dependent and two-pore domain potassium channels. Biochim Biophys Acta 1808:2036–2044

    Article  CAS  PubMed  Google Scholar 

  6. Braun G, Nemcsics B, Enyedi P, Czirják G (2011) TRESK background K+ channel is inhibited by PAR-1/MARK microtubule affinity-regulating kinases in xenopus oocytes. PLoS One 6:e28119

  7. Brohawn SG, Del MJ, MacKinnon R (2012) Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335:436–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bruner JK, Zou B, Zhang H, Zhang Y, Schmidt K, Li M (2014) Identification of novel small molecule modulators of K18.1 two-pore potassium channel. Eur J Pharmacol 740:603–610

    Article  CAS  PubMed  Google Scholar 

  9. Cadaveira-Mosquera A, Perez M, Reboreda A, Rivas-Ramirez P, Fernandez-Fernandez D, Lamas JA (2012) Expression of K2P channels in sensory and motor neurons of the autonomic nervous system. J Mol Neurosci 48:86–96

    Article  CAS  PubMed  Google Scholar 

  10. Chae YJ, Zhang J, Au P, Sabbadini M, Xie GX, Yost CS (2010) Discrete change in volatile anesthetic sensitivity in mice with inactivated tandem pore potassium ion channel TRESK. Anesthesiology 113:1326–1337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Cooper BY, Johnson RD, Rau KK (2004) Characterization and function of TWIK-related acid sensing K+ channels in a rat nociceptive cell. Neuroscience 129:209–224

    Article  CAS  PubMed  Google Scholar 

  12. Czirják G, Enyedi P (2006) Targeting of calcineurin to an NFAT-like docking site is required for the calcium-dependent activation of the background K+ channel, TRESK. J Biol Chem 281:14677–14682

    Article  PubMed  Google Scholar 

  13. Czirják G, Enyedi P (2006) Zinc and mercuric ions distinguish TRESK from the other two-pore-domain K+ channels. Mol Pharmacol 69:1024–1032

    PubMed  Google Scholar 

  14. Czirják G, Enyedi P (2010) Tresk background K+ channel is inhibited by phosphorylation via two distinct pathways. J Biol Chem 285:14549–14557

    Article  PubMed Central  PubMed  Google Scholar 

  15. Czirják, G. and Enyedi, P. (2014) The LQLP calcineurin-docking site is a major determinant of the calcium-dependent activation of human TRESK background K+ channel. J Biol Chem 289:29506–29518

  16. Czirják G, Tóth ZE, Enyedi P (2004) The two-pore domain K+ channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin. J Biol Chem 279:18550–18558

    Article  PubMed  Google Scholar 

  17. Czirják G, Vuity D, Enyedi P (2008) Phosphorylation-dependent binding of 14-3-3 proteins controls TRESK regulation. J Biol Chem 283:15672–15680

    Article  PubMed Central  PubMed  Google Scholar 

  18. Dobler T, Springauf A, Tovornik S, Weber M, Schmitt A, Sedlmeier R, Wischmeyer E, Döring F (2007) TRESK two-pore-domain K+ channels constitute a significant component of background potassium currents in murine dorsal root ganglion neurones. J Physiol 585:867–879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Enyedi P, Veres I, Braun G, Czirják G (2014) Tubulin binds to the cytoplasmic loop of TRESK background K+ channel in vitro. PLoS One 9:e97854

  20. Gohlke, B. O., Preissner, R., and Preissner, S. (2013) SuperPain—a resource on pain-relieving compounds targeting ion channels. Nucleic Acids Res 42:D1107–1112

  21. Guo Z, Cao YQ (2014) Over-expression of TRESK K+ channels reduces the excitability of trigeminal ganglion nociceptors. PLoS One 9:e87029

    Article  PubMed Central  PubMed  Google Scholar 

  22. Guo Z, Liu P, Ren F, Cao YQ (2014) Non-migraine associated TRESK K+ channel variant C110R does not increase the excitability of trigeminal ganglion neurons. J Neurophysiol 112:568–579

    Article  CAS  PubMed  Google Scholar 

  23. Han J, Kang D (2009) TRESK channel as a potential target to treat T-cell mediated immune dysfunction. Biochem Biophys Res Commun 390:1102–1105

    Article  CAS  PubMed  Google Scholar 

  24. Kang D, Kim D (2006) TREK-2 (K2P10.1) and TRESK (K2P18.1) are major background K+ channels in dorsal root ganglion neurons. Am J Physiol Cell Physiol 291:C138–C146

    Article  CAS  PubMed  Google Scholar 

  25. Kang D, Kim GT, Kim EJ, La JH, Lee JS, Lee ES, Park JY, Hong SG, Han J (2008) Lamotrigine inhibits TRESK regulated by G-protein coupled receptor agonists. Biochem Biophys Res Commun 367:609–615

    Article  CAS  PubMed  Google Scholar 

  26. Kang D, Mariash E, Kim D (2004) Functional expression of TRESK-2, a new member of the tandem-pore K+ channel family. J Biol Chem 279:28063–28070

    Article  CAS  PubMed  Google Scholar 

  27. Keshavaprasad B, Liu C, Au JD, Kindler CH, Cotten JF, Yost CS (2005) Species-specific differences in response to anesthetics and other modulators by the K2P channel TRESK. Anesth Analg 101:1042–1049

    Article  CAS  PubMed  Google Scholar 

  28. Kim S, Lee Y, Tak HM, Park HJ, Sohn YS, Hwang S, Han J, Kang D, Lee KW (2013) Identification of blocker binding site in mouse TRESK by molecular modeling and mutational studies. Biochim Biophys Acta 1828:1131–1142

    Article  CAS  PubMed  Google Scholar 

  29. Koo JY, Jang Y, Cho H, Lee CH, Jang KH, Chang YH, Shin J, Oh U (2007) Hydroxy-alpha-sanshool activates TRPV1 and TRPA1 in sensory neurons. Eur J Neurosci 26:1139–1147

    Article  PubMed  Google Scholar 

  30. Lafreniere RG, Cader MZ, Poulin JF, Andres-Enguix I, Simoneau M, Gupta N, Boisvert K, Lafreniere F, McLaughlan S, Dube MP, Marcinkiewicz MM, Ramagopalan S, Ansorge O, Brais B, Sequeiros J, Pereira-Monteiro JM, Griffiths LR, Tucker SJ, Ebers G, Rouleau GA (2010) A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat Med 16:1157–1160

    Article  CAS  PubMed  Google Scholar 

  31. Lennertz RC, Tsunozaki M, Bautista DM, Stucky CL (2010) Physiological basis of tingling paresthesia evoked by hydroxy-alpha-sanshool. J Neurosci 30:4353–4361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Liu C, Au JD, Zou HL, Cotten JF, Yost CS (2004) Potent activation of the human tandem pore domain K channel TRESK with clinical concentrations of volatile anesthetics. Anesth Analg 99:1715–1722

    Article  CAS  PubMed  Google Scholar 

  33. Liu J, Masuda ES, Tsuruta L, Arai N, Arai K (1999) Two independent calcineurin-binding regions in the N-terminal domain of murine NF-ATx1 recruit calcineurin to murine NF-ATx1. J Immunol 162:4755–4761

    CAS  PubMed  Google Scholar 

  34. Liu P, Xiao Z, Ren F, Guo Z, Chen Z, Zhao H, Cao YQ (2013) Functional analysis of a migraine-associated TRESK K+ channel mutation. J Neurosci 33:12810–12824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Maher BH, Taylor M, Stuart S, Okolicsanyi RK, Roy B, Sutherland HG, Haupt LM, Griffiths LR (2013) Analysis of 3 common polymorphisms in the KCNK18 gene in an Australian migraine case–control cohort. Gene 528:343–346

    Article  CAS  PubMed  Google Scholar 

  36. Manteniotis S, Lehmann R, Flegel C, Vogel F, Hofreuter A, Schreiner BS, Altmuller J, Becker C, Schobel N, Hatt H, Gisselmann G (2013) Comprehensive RNA-Seq expression analysis of sensory ganglia with a focus on ion channels and GPCRs in Trigeminal ganglia. PLoS One 8:e79523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Marsh B, Acosta C, Djouhri L, Lawson SN (2012) Leak K+ channel mRNAs in dorsal root ganglia: relation to inflammation and spontaneous pain behaviour. Mol Cell Neurosci 49:375–386

    Article  CAS  PubMed  Google Scholar 

  38. Matenia D, Mandelkow EM (2009) The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem Sci 34:332–342

    Article  CAS  PubMed  Google Scholar 

  39. Medhurst AD, Rennie G, Chapman CG, Meadows H, Duckworth MD, Kelsell RE, Gloger II, Pangalos MN (2001) Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Brain Res Mol Brain Res 86:101–114

    Article  CAS  PubMed  Google Scholar 

  40. Menozzi-Smarrito C, Riera CE, Munari C, le Coutre J, Robert F (2009) Synthesis and evaluation of new alkylamides derived from alpha-hydroxysanshool, the pungent molecule in szechuan pepper. J Agric Food Chem 57:1982–1989

    Article  CAS  PubMed  Google Scholar 

  41. Miller AN, Long SB (2012) Crystal structure of the human two-pore domain potassium channel K2P1. Science 335:432–436

    Article  CAS  PubMed  Google Scholar 

  42. Nyholt DR, LaForge KS, Kallela M, Alakurtti K, Anttila V, Farkkila M, Hamalainen E, Kaprio J, Kaunisto MA, Heath AC, Montgomery GW, Gobel H, Todt U, Ferrari MD, Launer LJ, Frants RR, Terwindt GM, De VB, Verschuren WM, Brand J, Freilinger T, Pfaffenrath V, Straube A, Ballinger DG, Zhan Y, Daly MJ, Cox DR, Dichgans M, Van den Maagdenberg AM, Kubisch C, Martin NG, Wessman M, Peltonen L, Palotie A (2008) A high-density association screen of 155 ion transport genes for involvement with common migraine. Hum Mol Genet 17:3318–3331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Patel AJ, Honore E, Lesage F, Fink M, Romey G, Lazdunski M (1999) Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2:422–426

    Article  CAS  PubMed  Google Scholar 

  44. Pike A.C.W., Dong Y.Y., Dong L., Quigley A., Shrestha L., Mukhopadhyay S., Strain-Damerell C., Goubin S., Grieben M., Shintre C.A., Mackenzie A., Vollmar M., Von Delft F., Arrowsmith C.H., Edwards A.M., Bountra C., Burgess-Brown N., Carpenter E.P. (2013) Crystal structure of human two pore domain potassium ion channel Trek2 (K2p10.1). PDB database: 4bw5, MMDB database:112180

  45. Pollema-Mays SL, Centeno MV, Ashford CJ, Apkarian AV, Martina M (2013) Expression of background potassium channels in rat DRG is cell-specific and down-regulated in a neuropathic pain model. Mol Cell Neurosci 57:1–9

    Article  CAS  PubMed  Google Scholar 

  46. Pottosin II, Bonales-Alatorre E, Valencia-Cruz G, Mendoza-Magana ML, Dobrovinskaya OR (2008) TRESK-like potassium channels in leukemic T cells. Pflugers Arch 456:1037–1048

    Article  CAS  PubMed  Google Scholar 

  47. Rahm AK, Gierten J, Kisselbach J, Staudacher I, Staudacher K, Schweizer PA, Becker R, Katus HA, Thomas D (2011) Protein kinase C-dependent activation of human K(2P) 18.1 K+ channels. Br J Pharmacol 166:764–773

    Article  Google Scholar 

  48. Rahm AK, Wiedmann F, Gierten J, Schmidt C, Schweizer PA, Becker R, Katus HA, Thomas D (2013) Functional characterization of zebrafish K18.1 (TRESK) two-pore-domain K channels. Naunyn Schmiedebergs Arch. Pharmacol 387:291–300

    Google Scholar 

  49. Rajan S, Preisig-Müller R, Wischmeyer E, Nehring R, Hanley PJ, Renigunta V, Musset B, Schlichthorl G, Derst C, Karschin A, Daut J (2002) Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J Physiol 545:13–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Rajan S, Wischmeyer E, Karschin C, Preisig-Müller R, Grzeschik KH, Daut J, Karschin A, Derst C (2001) THIK-1 and THIK-2, a novel subfamily of tandem pore domain K+ channels. J Biol Chem 276:7302–7311

    Article  CAS  PubMed  Google Scholar 

  51. Rajan S, Wischmeyer E, Xin LG, Preisig-Müller R, Daut J, Karschin A, Derst C (2000) TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histidine as pH sensor. J Biol Chem 275:16650–16657

  52. Riera CE, Menozzi-Smarrito C, Affolter M, Michlig S, Munari C, Robert F, Vogel H, Simon SA, le Coutre J (2009) Compounds from Sichuan and Melegueta peppers activate, covalently and non-covalently, TRPA1 and TRPV1 channels. Br J Pharmacol 157:1398–1409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Sanchez-Miguel DS, Garcia-Dolores F, Rosa Flores-Marquez M, Delgado-Enciso I, Pottosin I, Dobrovinskaya O (2013) TRESK potassium channel in human T lymphoblasts. Biochem Biophys Res Commun 434:273–279

    Article  CAS  PubMed  Google Scholar 

  54. Sano Y, Inamura K, Miyake A, Mochizuki S, Kitada C, Yokoi H, Nozawa K, Okada H, Matsushime H, Furuichi K (2003) A novel two-pore domain K+ channel, TRESK, is localized in the spinal cord. J Biol Chem 278:27406–27412

    Article  CAS  PubMed  Google Scholar 

  55. Silberstein SD, Dodick DW (2013) Migraine genetics: part II. Headache 53:1218–1229

    Article  PubMed  Google Scholar 

  56. Tsunozaki M, Lennertz RC, Vilceanu D, Katta S, Stucky CL, Bautista DM (2013) A ‘toothache tree’ alkylamide inhibits Adelta mechanonociceptors to alleviate mechanical pain. J Physiol 591:3325–3340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Tulleuda A, Cokic B, Callejo G, Saiani B, Serra J, Gasull X (2011) TRESK channel contribution to nociceptive sensory neurons excitability: modulation by nerve injury. Mol Pain 7:30–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Valencia-Cruz G, Shabala L, Delgado-Enciso I, Shabala S, Bonales-Alatorre E, Pottosin II, Dobrovinskaya OR (2009) Kbg and Kv1.3 channels mediate potassium efflux in the early phase of apoptosis in Jurkat T lymphocytes. Am JPhysiol Cell Physiol 285:14549–14557

    Google Scholar 

  59. Wright PD, Weir G, Cartland J, Tickle D, Kettleborough C, Cader MZ, Jerman J (2013) Cloxyquin (5-chloroquinolin-8-ol) is an activator of the two-pore domain potassium channel TRESK. Biochem Biophys Res Commun 441:463–468

    Article  CAS  PubMed  Google Scholar 

  60. Yoo S, Liu J, Sabbadini M, Au P, Xie GX, Yost CS (2009) Regional expression of the anesthetic-activated potassium channel TRESK in the rat nervous system. Neurosci Lett 465:78–84

    Article  Google Scholar 

  61. Yost CS (2000) Tandem pore domain K channels: an important site of volatile anesthetic action? Curr. Drug Targets 1:207–217

    Article  CAS  Google Scholar 

  62. Zhou J, Yang CX, Zhong JY, Wang HB (2013) Intrathecal TRESK gene recombinant adenovirus attenuates spared nerve injury-induced neuropathic pain in rats. Neuroreport 24:131–136

    Article  CAS  PubMed  Google Scholar 

  63. Zhou J, Yao SL, Yang CX, Zhong JY, Wang HB, Zhang Y (2012) TRESK gene recombinant adenovirus vector inhibits capsaicin-mediated substance P release from cultured rat dorsal root ganglion neurons. Mol Med Rep 5:1049–1052

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Zhu W, Oxford GS (2011) Differential gene expression of neonatal and adult DRG neurons correlates with the differential sensitization of TRPV1 responses to nerve growth factor. Neurosci Lett 500:192–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Hungarian National Research Fund (OTKA K108496).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Enyedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enyedi, P., Czirják, G. Properties, regulation, pharmacology, and functions of the K2P channel, TRESK. Pflugers Arch - Eur J Physiol 467, 945–958 (2015). https://doi.org/10.1007/s00424-014-1634-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1634-8

Keywords

Navigation