Skip to main content

Advertisement

Log in

MATLAB implementation of a dynamic clamp with bandwidth of >125 kHz capable of generating I Na at 37 °C

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

We describe the construction of a dynamic clamp with a bandwidth of >125 kHz that utilizes a high-performance, yet low-cost, standard home/office PC interfaced with a high-speed (16 bit) data acquisition module. High bandwidth is achieved by exploiting recently available software advances (code-generation technology and optimized real-time kernel). Dynamic-clamp programs are constructed using Simulink, a visual programming language. Blocks for computation of membrane currents are written in the high-level MATLAB language; no programming in C is required. The instrument can be used in single- or dual-cell configurations, with the capability to modify programs while experiments are in progress. We describe an algorithm for computing the fast transient Na+ current (I Na) in real time and test its accuracy and stability using rate constants appropriate for 37 °C. We then construct a program capable of supplying three currents to a cell preparation: I Na, the hyperpolarizing-activated inward pacemaker current (I f) and an inward-rectifier K+ current (I K1). The program corrects for the IR drop due to electrode current flow and also records all voltages and currents. We tested this program on dual patch-clamped HEK293 cells where the dynamic clamp controls a current-clamp amplifier and a voltage-clamp amplifier controls membrane potential, and current-clamped HEK293 cells where the dynamic clamp produces spontaneous pacing behavior exhibiting Na+ spikes in otherwise passive cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berecki G, Wilders R, de Jonge B, van Ginneken ACG, Verkerk AO (2010) Re-evaluation of the action potential upstroke velocity as a measure of the Na+ current in cardiac myocytes at physiological conditions. PLoS One 5(12):e15772. doi:10.1371/journal.pone.0015772

    Article  PubMed  CAS  Google Scholar 

  2. Berecki G, Zegers JG, Verkerk AO, Bhuiyan ZA, de Jonge B, Veldkamp MP, Wilders R, van Ginneken ACG (2005) HERG channel (dys)function revealed by dynamic action potential clamp technique. Biophys J 88:566–578

    Article  PubMed  CAS  Google Scholar 

  3. Bettencourt JC, Lillis KP, Stupin LR, White JA (2008) Effects of imperfect dynamic clamp: computational and experimental results. J Neurosci Meth 169:282–289. doi:10.1016/j.neumeth.2007.10.009

    Article  Google Scholar 

  4. Butera RJ, Wilson CG, DelNegro CA, Smith JC (2001) A methodology for achieving high-speed rates for artificial conductance injection in electrically excitable biological cells. IEEE Trans Biomed Eng 48:1560–1470

    Article  Google Scholar 

  5. Clausen C, Rosen MR, Cohen IS (2000) Synthesis of the cardiac purkinje-fiber action potential using a computer model. In: Zaza A (ed) An introduction to cardiac electrophysiology. Harwood Academic Publishers, Amsterdam, pp 199–216

    Google Scholar 

  6. Dorval AD, Christini DJ, White JA (2001) Real-time LINUX dynamic clamp: a fast and flexible way to construct virtual ion channels in living cells. Ann Biomed Eng 29:897–907

    Article  PubMed  CAS  Google Scholar 

  7. Economo MH, Fernandez FR, White JA (2010) Dynamic clamp: alteration of response properties and creation of virtual realities in neurophysiology. J Neurosci 30:2407–2413. doi:10.1523/JNEUROSCI.5954-09.2010

    Article  PubMed  CAS  Google Scholar 

  8. Fridlyand LE, Tamarina N, Philioson LH (2003) Modeling of Ca2+ flux in pancreatic β-cells: role of the plasma membrane and intracellular stores. Am J Physiol Endocrinol Metab 285:E138–E154

    PubMed  CAS  Google Scholar 

  9. Goaillard J-M, Marder E (2006) Dynamic clamp analysis of cardiac, endocrine, and neural function. Physiology 21:197–207. doi:10.1152/physiol.00063.2005

    Article  PubMed  Google Scholar 

  10. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    PubMed  CAS  Google Scholar 

  11. Hund TJ, Rudy Y (2004) Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation 110:3168–3174

    Article  PubMed  CAS  Google Scholar 

  12. Kaupp UB, Seifert R (2001) Molecular diversity of pacemaker ion channels. Annu Rev Physiol 63:235–257

    Article  PubMed  CAS  Google Scholar 

  13. Kinard TA, de Vries G, Sherman A, Satin LS (1999) Modulation of the bursting properties of single mouse pancreatic beta-cells by artificial conductances. Biophys J 76:1423–1435

    Article  PubMed  CAS  Google Scholar 

  14. Kullmann PHM, Wheeler DW, Beacom J, Horn JP (2004) Implementation of a fast 16-bit dynamic clamp using LabVIEW-RT. J Neurophysiol 91:542–554

    Article  PubMed  Google Scholar 

  15. Lau DH, Clausen C, Sosunov EA, Shlapakova IN, Anyukhovsky EP, Danilo P Jr, Rosen TS, Kelly C, Duffy HS, Szabolcs MJ, Chen M, Robinson RB, Lu J, Kumari S, Cohen IS, Rosen MR (2009) Epicardial border zone overexpression of skeletal muscle sodium channel SkM1 normalizes activation, preserves conduction, and suppresses ventricular arrhythmia. Circulation 119:19–27

    Article  PubMed  CAS  Google Scholar 

  16. Lin RJ, Bettencourt J, Wha IJ, Christini DJ, Butera RJ (2010) Real-time experiment interface for biological control applications. Conf Proc IEEE Eng Med Biol Soc 2010:4160–4163

    PubMed  Google Scholar 

  17. Lu Z, Wu C-YC, Jiang Y-P, Ballou LM, Clausen C, Cohen IS, Lin RZ (2012) Suppression of Phosphoinositide 3-Kinase Signaling and Alteration of Multiple Ion Currents in Drug-Induced Long QT Syndrome. Sci Transl Med 4:131ra50. doi: 10.1126/scitranslmed.3003623

  18. Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 74:1071–1096

    Article  PubMed  CAS  Google Scholar 

  19. Marder E, Goaillard J-M (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7:563–574. doi:10.1038/nm1949

    Article  PubMed  CAS  Google Scholar 

  20. Milescu LS, Yamanishi T, Ptak K, Mogri MZ, Smith JC (2008) Real-time kinetic modeling of voltage-gated ion channels using dynamic clamp. Biophys J 95:66–87

    Article  PubMed  CAS  Google Scholar 

  21. Prinz AA, Abbott LF, Marder E (2004) The dynamic clamp comes of age. Trends Neurosci 27:218–224. doi:10.1016/j.tins.2004.02.004

    Article  PubMed  CAS  Google Scholar 

  22. Robinson HPC, Kawai N (1993) Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J Neurosci Meth 49:157–165

    Article  CAS  Google Scholar 

  23. Scott S (1979) Stimulation Simulations of Young Yet Cultured Beating Hearts (PhD thesis). Buffalo, NY: State University of New York

  24. Sharp AA, O’Neil MB, Abbott LF, Marder E (1993) Dynamic clamp: computer generated conductances in real neurons. J Neurophysiol 69:992–995

    PubMed  CAS  Google Scholar 

  25. Sun X, Wang HS (2005) Role of the transient outward current (I to) in shaping canine ventricular action potential: a dynamic clamp study. J Physiol 564:411–419

    Article  PubMed  CAS  Google Scholar 

  26. Valiunas V, Clausen C, Butz R, Valiuniene L, Brink PR, Cohen IS (2011) Using the dynamic clamp and coupled cells to study pacemaker activity. In: proceedings of 2011 keystone symposia, molecular cardiology: disease mechanisms and experimental therapeutics, keystone, colorado, February 22–27, 2011. p. 168

  27. Valiunas V, Kanaporis G, Valiuniene L, Gordon C, Wang HZ, Li L, Robinson RB, Rosen MR, Cohen IS, Brink PR (2009) Coupling an HCN2-expressing cell to a myocyte creates a two-cell pacing unit. J Physiol 587:5211–5226

    Article  PubMed  CAS  Google Scholar 

  28. Verheijck EE, Wilders R, Joyner RW, Golod DA, Jumar R, Jongsma HJ, Bouman LN, van Ginneken ACG (1998) Pacemaker synchronization of electrically coupled rabbit sinoatrial node cells. J Gen Physiol 111:95–112

    Article  PubMed  CAS  Google Scholar 

  29. Wang HS, McKinnon D (1995) Potassium currents in rat prevertebral and paravertebral sympathetic neurones: control of firing properties. J Physiol 485:319–335

    PubMed  CAS  Google Scholar 

  30. Wilders R (2006) Dynamic clamp: a powerful tool in cardiac electrophysiology. J Physiol 576(2):349–359. doi:10.1113/jphysiol.2006.115840

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Mr. Robert Butz provided valuable hardware advice and built the dynamic clamp hardware. Dr. Michael R. Rosen provided critical comments on the manuscript. The xPC Target development team at Mathworks graciously responded to detailed technical questions regarding their xPC target software. This study is supported by the National Institutes of General Medical Sciences grant GM-088181; National Heart, Lung and Blood Institute grants HL-111401, HL-094410, and HL-111649; and New York Stem Cell Science grant CO24344.

Ethical standards

This work complies with the current laws of the USA.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Clausen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 263 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clausen, C., Valiunas, V., Brink, P.R. et al. MATLAB implementation of a dynamic clamp with bandwidth of >125 kHz capable of generating I Na at 37 °C. Pflugers Arch - Eur J Physiol 465, 497–507 (2013). https://doi.org/10.1007/s00424-012-1186-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1186-8

Keywords

Navigation