Skip to main content

Advertisement

Log in

Spiral ganglion neurones: an overview of morphology, firing behaviour, ionic channels and function

  • Sensory Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The spiral ganglion cells provide the afferent innervation of the hair cells of the organ of Corti. Ninety-five percent of these cells (termed type I spiral ganglion neurones) are in synaptic contact with the inner hair cells, whereas about 5% of them are type II cells, which are responsible for the sensory innervation of the outer hair cells. To understand the function of the spiral ganglion neurones, it is important to explore their membrane properties, understand their activity patterns and describe the variety of ionic channels determining their behaviour. In this review, a brief description is given of the various experimental methods that allow the investigation of the spiral ganglion cells, followed by the discussion of their action potential firing patterns and ionic conductances. The presence, distribution and significance of the K+ currents of the spiral ganglion cells are specifically addressed, along with the introduction of the putative subunit compositions of the relevant voltage-gated K+ channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rasmussen GL (1946) The olivary peduncle and the other fiber projections of the superior olivary complex. J Comp Neurol 84:141

    Article  Google Scholar 

  2. Kellerhals B, Engstrom H, Ades HW (1967) Die Morphologie des Ganglion spirale cochleae. Acta Otolaryngol 226:1–78

    Google Scholar 

  3. Spoendlin H (1971) Degeneration behaviour of the cochlear nerve. Arch Klin Exp Ohren Nasen Kehlkopfheilk 200:275–291

    Article  CAS  Google Scholar 

  4. Spoendlin H (1981) Differentiation of cochlear afferent neurons. Acta Otolaryngol 91:451–456

    Article  PubMed  CAS  Google Scholar 

  5. Morrison D, Schindler RA, Wersäll J (1975) Quantitative analysis of the afferent innervation of the organ of Corti in guinea pig. Acta Otolaryngol 79:11–23

    Article  PubMed  CAS  Google Scholar 

  6. Ota CY, Kimura RS (1980) Ultrastructural study of the human spiral ganglion. Acta Otolaryngol 89:53–62

    Article  PubMed  CAS  Google Scholar 

  7. Ryan AF, Schwartz IR (1983) Preferential amino acid uptake identifies type II spiral ganglion neurons in the gerbil. Hear Res 9:173–194

    Article  PubMed  CAS  Google Scholar 

  8. Spoendlin H (1969) Innervation patterns in the organ of Corti of the cat. Acta Otolaryngol 67:239–254

    Article  PubMed  CAS  Google Scholar 

  9. Spoendlin H (1972) Innervation densities of the cochlea. Acta Otolaryngol 73:235–248

    Article  PubMed  CAS  Google Scholar 

  10. Spoendlin H (1979) Neural connections of the outer hair cell system. Acta Otolaryngol 87:381–387

    Article  PubMed  CAS  Google Scholar 

  11. Robertson D (1984) Horseradish peroxidase injection of physiologically characterized afferent and efferent neurones in the guinea pig spiral ganglion. Hear Res 15:113–121

    Article  PubMed  CAS  Google Scholar 

  12. Berglund AM, Ryugo DK (1987) Hair cell innervation by spiral ganglion neurons in the mouse. J Comp Neurol 255:560–570

    Article  PubMed  CAS  Google Scholar 

  13. Brown MC (1987) Morphology of labeled afferent fibers in the guinea pig cochlea. J Comp Neurol 260:591–604

    Article  PubMed  CAS  Google Scholar 

  14. Echeteler SM (1992) Developmental segregation in the afferent projections to mammalian auditory hair cells. Proc Natl Acad Sci USA 89:6324–6327

    Article  Google Scholar 

  15. Robertson D, Sellcik PM, Patuzzi R (1999) The continuing search for outer hair cell afferents in the guinea pig spiral ganglion. Hear Res 136:151–158

    Article  PubMed  CAS  Google Scholar 

  16. Hudspeth AJ, Jacobs R (1979) Stereocilia mediate transduction in vertebrate hair cells. Proc Natl Acad Sci USA 76:1506–1509

    Article  PubMed  CAS  Google Scholar 

  17. Hudspeth AJ (1985) The cellular basis of hearing: the biophysics of hair cells. Science 230:745–752

    Article  PubMed  CAS  Google Scholar 

  18. Kros CJ, Crawford AC (1990) Potassium currents in inner hair cells isolated from the guinea-pig cochlea. J Physiol 421:263–291

    PubMed  CAS  Google Scholar 

  19. Roberts WM, Jacobs RA, Hudspeth AJ (1990) Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J Neurosci 10:3664–3684

    PubMed  CAS  Google Scholar 

  20. Zhang SY, Robertson D, Yates G, Everett A (1999) Role of L-type Ca2+ channels in transmitter release from mammalian inner hair cells. I. Gross sound-evoked potentials. J Neurophysiol 82:3307–3315

    PubMed  CAS  Google Scholar 

  21. Godfrey DA, Carter JA, Berger SJ, Matschinsky FM (1976) Levels of putative transmitter amino acids in the guinea pig cochlea. J Histochem Cytochem 24:468–470

    PubMed  CAS  Google Scholar 

  22. Altschuler RA, Sheridan CE, Horn JW, Wenthold RJ (1989) Immunocytochemical localization of glutamate immunoreactivity in the guinea pig cochlea. Hear Res 42:167–173

    Article  PubMed  CAS  Google Scholar 

  23. Drescher MJ, Drescher DG (1992) Glutamate, of the endogenous primary alpha-amino acid, is specifically released from hair cells by elevated extracellular potassium. J Neurochem 59:93–98

    Article  PubMed  CAS  Google Scholar 

  24. Niedzielski AS, Wenthold RJ (1995) Expression of AMPA, kainate, and NMDA receptor subunits in cochlear and vestibular ganglia. J Neurosci 13:3496–3509

    Google Scholar 

  25. Matsubara A, Laake JH, Davanger S, Usami S, Ottersen OP (1996) Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J Neurosci 16:4457–4467

    PubMed  CAS  Google Scholar 

  26. Ruel J, Chen C, Pujol R, Bobbin RP, Puel JL (1999) AMPA-preferring glutamate receptors in cochlear physiology of adult guinea-pig. J Physiol 518:667–680

    Article  PubMed  CAS  Google Scholar 

  27. Glowatzki E, Fuchs PA (2002) Transmitter release at the hair cell ribbon synapse. Nature Neurosci 5:147–154

    Article  PubMed  CAS  Google Scholar 

  28. Saffieddine S, Eybalin M (1992) Co-expression of NMDA and AMPA/kainate receptor mRNAs in cochlear neurones. Neuroreport 3:1145–1148

    Article  Google Scholar 

  29. Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155

    Article  PubMed  CAS  Google Scholar 

  30. Dallos P, Corey ME (1991) The role of outer hair cell motility in cochlear tuning. Curr Opin Neurobiol 1:215–220

    Article  PubMed  CAS  Google Scholar 

  31. Usami S, Osen KK, Zhang N, Ottersen OP (1992) Distribution of glutamate-like and glutamine-like immunoreactivities in the rat organ of Corti: a light microscopic and semiquantitative electron microscopic analysis with a note on the localization of aspartate. Exp Brain Res 91:1–11

    Article  PubMed  CAS  Google Scholar 

  32. Kuriyama H, Albin RL, Altschuler RA (1993) Expression of NMDA receptor mRNA in the rat cochlea. Hear Res 69:215–220

    Article  PubMed  CAS  Google Scholar 

  33. Kuriyama H, Jenkins O, Altschuler RA (1994) Immunocytochemical localization of AMPA selective glutamate receptor subunits in the rat cochlea. Hear Res 80:233–240

    Article  PubMed  CAS  Google Scholar 

  34. Mott JB, Norton SJ, Neely ST, Warr WB (1989) Changes in spontaneous otoacoustic emissions produced by acoustic stimulation of the contralateral ear. Hear Res 38:229–242

    Article  PubMed  CAS  Google Scholar 

  35. Collet L, Kemp DT, Veuillet E, Duclaux R, Moulin A, Morgon A (1990) Effect of contralateral auditory stimuli on active cochlear micro-mechanical properties in human subjects. Hear Res 43:251–261

    Article  PubMed  CAS  Google Scholar 

  36. Whitehead ML, Martin GK, Lonsbury-Martin BL (1991) Effects of crossed acoustic reflex on distortion-product otoacoustic emissions in awake rabbits. Hear Res 51:55–72

    Article  PubMed  CAS  Google Scholar 

  37. Bobbin RP, Konishi T (1971) Acetylcholine mimics crossed olivocochlear bundle stimulation. Nat New Biol 231:222–223

    PubMed  CAS  Google Scholar 

  38. Warr WB (1975) Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J Comp Neurol 161:159–181

    Article  PubMed  CAS  Google Scholar 

  39. Robertson D, Johnstone BM (1978) Efferent transmitter substance in the mammalian cochlea: single neuron support for acetylcholine. Hear Res 1:31–34

    Article  PubMed  CAS  Google Scholar 

  40. Altschuler RA, Kachar B, Rubio JA, Parakkal MH, Fex J (1985) Immunocytochemical localization of choline acetyltransferase-like immunoreactivity in the guinea pig cochlea. Brain Res 338:1–11

    Article  PubMed  CAS  Google Scholar 

  41. Eybalin M, Pujol R (1987) Choline acetyltransferase (ChAT) immunoelectron microscopy distinguishes at least three types of efferent synapses in the organ of Corti. Exp Brain Res 65:261–270

    Article  PubMed  CAS  Google Scholar 

  42. Eybalin M, Parnaud C, Geffard M, Pujol R (1988) Immunoelectron microscopy identifies several types of GABA-containing efferent synapses in the guinea-pig organ of Corti. Neuroscience 24:29–38

    Article  PubMed  CAS  Google Scholar 

  43. Reale RA, Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. J Comp Neurol 192:265–291

    Article  PubMed  CAS  Google Scholar 

  44. Lauter JL, Herscovitch P, Formby C, Raichle ME (1985) Tonotopic organization in human auditory cortex revealed by positron emission tomography. Hear Res 20:199–205

    Article  PubMed  CAS  Google Scholar 

  45. Romand R, Romand MR (1985) Qualitative and quantitative observations of spiral ganglion development of the rat. Hear Res 18:111–120

    Article  PubMed  CAS  Google Scholar 

  46. Simmons DD, Manson-Gieske L, Hendrix TW, Morris K, Williams SJ (1991) Postnatal maturation of spiral ganglion neurons: a horseradish peroxidase study. Hear Res 55:81–91

    Article  PubMed  CAS  Google Scholar 

  47. Echeteler SM, Nofsinger YC (2000) Development of ganglion cell topography in the postnatal cochlea. J Comp Neurol 425:436–446

    Article  Google Scholar 

  48. Anniko M (1983) Early development and maturation of the spiral ganglion. Acta Otolaryngol 95:263–276

    Article  PubMed  CAS  Google Scholar 

  49. Bakondi G, Pór Á, Kovács I, Szűcs G, Rusznák Z (2008) Voltage-gated K+ channel (Kv) subunit expression of the guinea pig spiral ganglion cells studied in a newly developed cochlear free-floating preparation. Brain Res 1210:148–162

    Article  PubMed  CAS  Google Scholar 

  50. Liberman CM, Oliver ME (1984) Morphometry of intracellularly labeled neurons of the auditory nerve: correlations with functional properties. J Comp Neurol 223:163–176

    Article  PubMed  CAS  Google Scholar 

  51. Montero C (2003) The antigen–antibody reaction in immunohistochemistry. J Histochem Cytochem 51:1–4

    PubMed  CAS  Google Scholar 

  52. Mo ZL, Davis RL (1997) Endogenous firing patterns of murine spiral ganglion neurons. J Neurphysiol 77:1294–1305

    CAS  Google Scholar 

  53. Jagger DJ, Robertson D, Housley GD (2000) A technique for slicing the rat cochlea around the onset of hearing. J Neurosci Meth 104:77–86

    Article  CAS  Google Scholar 

  54. Chen WC, Davis RL (2006) Voltage-gated and two-pore-domain potassium channels in murine spiral ganglion neurons. Hear Res 222:89–99

    Article  PubMed  CAS  Google Scholar 

  55. Xie D, Hu P, Xiao Z, Wu W, Chen Y, Xia K (2007) Subunits of voltage-gated calcium channels in murine spiral ganglion cells. Acta Otolaryngol 127:8–12

    Article  PubMed  Google Scholar 

  56. Spoendlin H (1985) Anatomy of cochlear innervation. Am J Otolaryngol 6:453–467

    Article  PubMed  CAS  Google Scholar 

  57. Perkins RE, Morest DK (1975) A study of cochlear innervation patterns in cats and rats with the Golgi method and Nomarski optics. J Comp Neurol 163:129–158

    Article  PubMed  CAS  Google Scholar 

  58. Liberman MC (1982) The cochlear frequency map for the cat: labelling auditory-nerve fibers of known characteristic frequency. J Acoust Soc Am 72:1441–1449

    Article  PubMed  CAS  Google Scholar 

  59. Lin X (1997) Action potentials and underlying voltage-dependent currents studied in cultured spiral ganglion neurons of the postnatal gerbil. Hear Res 108:157–179

    Article  PubMed  CAS  Google Scholar 

  60. Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: quantitative analysis with light and electron microscopy. J Comp Neurol 301:443–460

    Article  PubMed  CAS  Google Scholar 

  61. Echteler SM (1992) Developmental segregation in the afferent projections to mammalian auditory hair cells. Proc Natl Acad Sci USA 89:6324–6327

    Article  PubMed  CAS  Google Scholar 

  62. Sando I (1965) The anatomical interrelationships of the cochlear nerve fibers. Acta Otolaryngol 59:417

    Article  Google Scholar 

  63. Fischer FP (1998) Hair cell morphology and innervation in the basilar papilla of the emu (Dromaius novaehollandiae). Hear Res 121:112–124

    Article  PubMed  CAS  Google Scholar 

  64. Brown MC (1987) Morphology of labeled afferent fibers in the guinea pig cochlea. J Comp Neurol 260:591–604

    Article  PubMed  CAS  Google Scholar 

  65. Fechner FP, Burgess BJ, Adams JC, Liberman MC, Nadol JB Jr (1998) Dense innervation of Deiters’ and Hensen’s cells persists after chronic deefferentation of guinea pig cochleas. J Comp Neurol 400:299–309

    Article  PubMed  CAS  Google Scholar 

  66. Berglund AM, Brown MC (1994) Central trajectories of type II spiral ganglion cells from various cochlear regions in mice. Hear Res 75:121–130

    Article  PubMed  CAS  Google Scholar 

  67. Fechner FP, Nadol JJ, Burgess BJ, Brown MC (2001) Innervation of supporting cells in the apical turns of the guinea pig cochlea is from type II afferent fibers. J Comp Neurol 429:289–298

    Article  PubMed  CAS  Google Scholar 

  68. Dulon D, Moataz R, Mollard P (1993) Characterization of Ca2+ signals generated by extracellular nucleotides in supporting cells of the organ of Corti. Cell Calcium 14:245–254

    Article  PubMed  CAS  Google Scholar 

  69. Dulon D, Blanchet C, Lafflon E (1994) Photo-released intracellular Ca2+ evokes reversible mechanical responses in supporting cells of the guinea-pig organ of Corti. Biochem Biophys Res Comm 201:1263–1269

    Article  PubMed  CAS  Google Scholar 

  70. Sugasawa M, Erostegui C, Blanchet C, Dulon D (1996) ATP activates a cation conductance and Ca2+-dependent Cl conductance in Hensen cells of guinea pig cochlea. Am J Physiol 271:1817–1827

    Google Scholar 

  71. Santos-Sacchi J (1993) Voltage-dependent ionic conductances of type I spiral ganglion cells from the guinea pig inner ear. J Neurosci 13:3599–3611

    PubMed  CAS  Google Scholar 

  72. Kimura RS, Bongiorno CL, Iverson NA (1987) Synapses and ephapses in the spiral ganglion. Acta Otolaryngol Suppl 438:1–18

    PubMed  CAS  Google Scholar 

  73. Kimura RS, Ota CY, Takahashi T (1979) Nerve fiber synapses on spiral ganglion cells in the human cochlea. Ann Otol Rhinol Laryngol Suppl 62:1–17

    Google Scholar 

  74. Arnold W (1987) Myelination of the human spiral ganglion. Acta Otolaryngol Suppl 436:76–84

    Article  PubMed  CAS  Google Scholar 

  75. Szabó ZS, Harasztosi CS, Sziklai I, Szűcs G, Rusznák Z (2002) Ionic currents determining the membrane characteristics of type I spiral ganglion neurons of the guinea pig. Eur J Neurosci 16:1887–1895

    Article  PubMed  Google Scholar 

  76. Szabó ZS, Harasztosi CS, Szűcs G, Sziklai I, Rusznák Z (2003) A detailed procedure and dissection guide for the isolation of spiral ganglion cells of the guinea pig for electrophysiological experiments. Brain Res Protoc 10:139–147

    Article  Google Scholar 

  77. Chen C (1997) Hyperpolarization-activated current (I h) in primary auditory neurons. Hear Res 110:179–190

    Article  PubMed  CAS  Google Scholar 

  78. Robertson D (1976) Possible reaction between structure and spike shapes of neurones of the guinea pig cochlear ganglion. Brain Res 106:487–496

    Article  Google Scholar 

  79. Yates GK, Robertson D, Johnstone BM (1985) Very rapid adaptation in the guinea pig auditory nerve. Hear Res 17:1–12

    Article  PubMed  CAS  Google Scholar 

  80. Romand R, Romand MR, Mulle C, Marty R (1980) Early stages of myelination in the spiral ganglion cells of the kitten during development. Acta Otolaryngol 90:391–397

    Article  PubMed  CAS  Google Scholar 

  81. Romand R, Romand MR (1986) Perinatal growth of spiral ganglion cells in the kitten. Hear Res 21:161–165

    Article  PubMed  CAS  Google Scholar 

  82. Romand MR, Romand R (1987) The ultrastructure of spiral ganglion cells in the mouse. Acta Otolaryngol 104:29–39

    Article  PubMed  CAS  Google Scholar 

  83. Romand MR, Romand R (1990) Development of spiral ganglion cells in mammalian cochlea. J Electron Microsc 15:144–154

    Article  CAS  Google Scholar 

  84. Goycoolea MV, Stypulkowski P, Muchow DC (1990) Ultrastructural studies of the peripheral extensions (dendrites) of type I ganglion cells in the cat. Laryngoscope 100:19–24

    Article  PubMed  CAS  Google Scholar 

  85. Romand R, Romand MR (1985) Qualitative and quantitative observations of spiral ganglion development in the rat. Hear Res 18:111–120

    Article  PubMed  CAS  Google Scholar 

  86. Jagger DJ, Housley GD (2003) Membrane properties of type II spiral ganglion neurones identified in a neonatal rat cochlear slice. J Physiol 552:525–533

    Article  PubMed  CAS  Google Scholar 

  87. Nadol JB Jr, Burgess B, Reissner C (1990) Morphometric analysis of normal human spiral ganglion cells. Ann Otol Rhinol Laryngol 99:340–348

    PubMed  Google Scholar 

  88. Anniko M, Arnold W, Stigbrand T, Ström A (1995) The human spiral ganglion. ORL J Otorhinolaryngol Relat Spec 57:68–77

    PubMed  CAS  Google Scholar 

  89. Hafidi A, Despres G, Romand R (1993) Ontogenesis of type II spiral ganglion neurons during development: peripherin immunohistochemistry. Int J Dev Neurosci 11:507–512

    Article  PubMed  CAS  Google Scholar 

  90. Hafidi A (1998) Peripherin-like immunoreactivity in type II spiral ganglion cell body and projections. Brain Res 805:181–190

    Article  PubMed  CAS  Google Scholar 

  91. Mou K, Adamson CL, Davis RL (1998) Time-dependence and cell-type specificity of synergistic neurotrophin actions on spiral ganglion neurons. J Comp Neurol 402:129–139

    Article  PubMed  CAS  Google Scholar 

  92. Reid MA, Flores-Otero J, Davis RL (2004) Firing patterns of type II spiral ganglion neurons in vitro. J Neurosci 24:733–742

    Article  PubMed  CAS  Google Scholar 

  93. Hsu Y, Firestein BL, Davis RL (2002) Differential distribution of membrane-associated guanylate kinases (MAGUKs) in type I and type II spiral ganglion neurons. Assoc Res Otolaryngol 25:410

    Google Scholar 

  94. Jagger DJ, Housley GD (2002) A-type potassium currents dominate repolarisation of neonatal rat primary auditory neurones in situ. Neuroscience 109:169–182

    Article  PubMed  CAS  Google Scholar 

  95. Malgrange B, Rigo JM, Lefebvre PP, Coucke P, Goffin F, Xhauflaire G, Belachew S, Van De Water TR, Moonen G (1997) Diazepam-insensitive GABAA receptors on postnatal spiral ganglion neurones in culture. NeuroReport 8:591–596

    Article  PubMed  CAS  Google Scholar 

  96. Lin X, Chen S, Chen P (2000) Activation of metabotropic GABAB receptors inhibited glutamate responses in spiral ganglion neurons of mice. NeuroReport 11:957–961

    Article  PubMed  CAS  Google Scholar 

  97. Cho H, Harada N, Yamashita T (1997) Extracellular ATP-induced Ca2+ mobilization of type I spiral ganglion cells from the guinea pig cochlea. Acta Otolaryngol 117:545–552

    Article  PubMed  CAS  Google Scholar 

  98. Salih SG, Housley GD, Raybould NP, Thorne PR (1999) ATP-gated ion channel expression in primary auditory neurones. NeuroReport 10:2579–2586

    Article  PubMed  CAS  Google Scholar 

  99. Rome C, Luo D, Dulon D (1999) Muscarinic receptor-mediated calcium signalling in spiral ganglion neurons of the mammalian cochlea. Brain Res 846:196–203

    Article  PubMed  CAS  Google Scholar 

  100. Adamson CL, Reid MA, Mo ZL, Bowne-English J, Davis RL (2002) Firing features and potassium channel content of murine spiral ganglion neurons vary with cochlear location. J Comp Neurol 447:331–350

    Article  PubMed  CAS  Google Scholar 

  101. Evans EF (1972) The frequency response and other properties of single fibres in the guinea-pig cochlear nerve. J Physiol 226:263–287

    PubMed  CAS  Google Scholar 

  102. Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455

    Article  PubMed  CAS  Google Scholar 

  103. Bobbin RP (1979) Glutamate and aspartate mimic the afferent transmitter of the cochlea. Exp Brain Res 34:389–393

    Article  PubMed  CAS  Google Scholar 

  104. Sewell WF (1984) The relation between the endocochlear potential and spontaneous activity in auditory nerve fibres of the cat. J Physiol 347:685–696

    PubMed  CAS  Google Scholar 

  105. Kawase T, Liberman MC (1992) Spatial organisation of the auditory nerve according to spontaneous discharge rate. J Comp Neurol 319:312–318

    Article  PubMed  CAS  Google Scholar 

  106. Lin X, Chen S (2000) Endogenously generated spontaneous spiking activities recorded from postnatal spiral ganglion neurons in vitro. Dev Brain Res 119:297–305

    Article  CAS  Google Scholar 

  107. Robertson D, Paki B (2002) Role of L-type Ca2+ channels in transmitter release from mammalian inner hair cells. II. Single-neuron activity. J Neurophysiol 87:2734–2740

    CAS  Google Scholar 

  108. Cousillas H, Cole KS, Johnstone BM (1988) Effect of spider venom on cochlear nerve activity consistent with glutaminergic transmission at hair cell-afferent dendrite synapse. Hear Res 36:213–220

    Article  PubMed  CAS  Google Scholar 

  109. Puel JL, Bobbin RP, Fallon M (1989) Suppression of auditory nerve activity in the guinea pig cochlea by 1-(ρ-bromobenzoyl)-piperazine-2,3-dicarboxylic acid. Brain Res 487:9–15

    Article  PubMed  CAS  Google Scholar 

  110. Robertson D (1985) Brainstem location of efferent neurons projecting to the guinea pig cochlea. Hear Res 20:79–84

    Article  PubMed  CAS  Google Scholar 

  111. Zhou Z, Liu Q, Davis RL (2005) Complex regulation of spiral ganglion neuron firing patterns by neurotrophin-3. J Neurosci 25:7558–7566

    Article  PubMed  CAS  Google Scholar 

  112. Hapner SJ, Boeshore KL, Large TH, Lefcort F (1998) Neural differentiation promoted by truncated trkC receptors in collaboration with p75(NTR). Dev Biol 201:90–100

    Article  PubMed  CAS  Google Scholar 

  113. Adamson CL, Reid MA, Davis RL (2002) Opposite actions of brain-derived neurotrophic factor and neurotrophin-3 on firing features and ion channel composition of murine spiral ganglion neurons. J Neurosci 22:1385–1396

    PubMed  CAS  Google Scholar 

  114. Malgrange B, Rogister B, Lefebvre PP, Mazy-Servais C, Welcher AA, Bonnet C, Hsu R-Y, Rigo J-M, Van De Water TR, Moonen G (1998) Expression of growth factors and their receptors in the postnatal rat cochlea. Neurochem Res 23:1133–1138

    Article  PubMed  CAS  Google Scholar 

  115. Luo L, Koutnouyan H, Baird A, Ryan AF (1993) Acidic and basic FGF mRNA expression in the adult and developing rat cochlea. Hear Res 69:182–193

    Article  PubMed  CAS  Google Scholar 

  116. Marzella PL, Gillespie LN, Clark GM, Bartlett PF, Kilpatrick TJ (1999) The neurotrophins act synergistically with LIF and members of the TGF-β superfamily to promote the survival of spiral ganglia neurons in vitro. Hear Res 138:73–80

    Article  PubMed  CAS  Google Scholar 

  117. Hossain WA, Morest DK (2000) Fibroblast growth factors (FGF-1, FGF-2) promote migration and neurite growth of mouse cochlear ganglion cells in vitro: immunocytochemistry and antibody perturbation. J Neurosci Res 62:40–55

    Article  PubMed  CAS  Google Scholar 

  118. Gillespie LN, Clark GM, Bartlett PF, Marzella PL (2001) LIF is more potent than BDNF in promoting neurite outgrowth of mammalian auditory neurons in vitro. NeuroReport 12:275–279

    Article  PubMed  CAS  Google Scholar 

  119. Ernfors P, Van De Water T, Loring J, Jaenisch R (1995) Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14:1153–1164

    Article  PubMed  CAS  Google Scholar 

  120. Moser T, Beutner D (2000) Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proc Natl Acad Sci USA 97:883–888

    Article  PubMed  CAS  Google Scholar 

  121. Dodson PD, Forsythe ID (2004) Presynaptic K+ channels: electrifying regulators of synaptic terminal excitability. Trends Neurosci 27:210–217

    Article  PubMed  CAS  Google Scholar 

  122. García-Díaz JF (1999) Development of a fast transient potassium current in chick cochlear ganglion neurons. Hear Res 135:124–134

    Article  PubMed  Google Scholar 

  123. Lin X, Chen S, Tee D (1998) Effects of quinine on the excitability and voltage-dependent currents of isolated spiral ganglion neurons in culture. J Neurophysiol 79:2503–2512

    PubMed  CAS  Google Scholar 

  124. Fernandez FR, Morales E, Rashid AJ, Dunn RJ, Turner RW (2003) Inactivation of Kv3.3 potassium channels in heterologous expression systems. J Biol Chem 278:40890–40898

    Article  PubMed  CAS  Google Scholar 

  125. Mo ZL, Adamson CL, Davis RL (2002) Dendrotoxin-sensitive K+ currents contribute to accommodation in murine spiral ganglion neurons. J Physiol 542:763–778

    Article  PubMed  CAS  Google Scholar 

  126. Allen ML, Koh DS, Tempel BL (1998) Cyclic cAMP regulates potassium channel expression in C6 glioma by destabilizing Kv1.1 mRNA. Proc Natl Acad Sci USA 95:7693–7698

    Article  PubMed  CAS  Google Scholar 

  127. Hopkins WF (1998) Toxin and subunit specificity of blocking affinity of three peptide toxins for heteromultimeric, voltage-gated potassium channels expressed in Xenopus oocytes. J Pharmacol Exp Ther 285:1051–1060

    PubMed  CAS  Google Scholar 

  128. Smart SL, Bosma MM, Tempel BL (1997) Identification of the delayed rectifier potassium channel, Kv1.6, in cultured astrocytes. Glia 20:127–134

    Article  PubMed  CAS  Google Scholar 

  129. Harvey AL (2001) Twenty years of dendrotoxins. Toxicon 39:15–26

    Article  PubMed  CAS  Google Scholar 

  130. Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD, Chandy KG (1994) Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol 45:1227–1234

    PubMed  CAS  Google Scholar 

  131. Hopkins WF, Allen ML, Houamed KM, Tempel BL (1994) Properties of voltage-gated K+ currents expressed in Xenopus oocytes by mKv1.1, mKv1.2 and their heteromultimers as revealed by mutagenesis of the dendrotoxin-binding site in mKv1.1. Pflügers Arch 428:382–390

    Article  PubMed  CAS  Google Scholar 

  132. Southan AP, Robertson B (2000) Electrophysiological characterization of voltage-gated K+ currents in cerebellar basket and purkinje cells: Kv1 and Kv3 channel subfamilies are present in basket cell nerve terminals. J Neurosci 20:114–122

    PubMed  CAS  Google Scholar 

  133. Bekkers JM, Delaney AJ (2001) Modulation of excitability by alpha-dendrotoxin-sensitive potassium channels in neocortical pyramidal neurons. J Neurosci 21:6553–6560

    PubMed  CAS  Google Scholar 

  134. Manis PB, Marx SO (1991) Outward currents in isolated ventral cochlear nucleus neurons. J Neurosci 11:2865–2880

    PubMed  CAS  Google Scholar 

  135. Brew HM, Forsythe ID (1995) Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse. J Neurosci 15:8011–8022

    PubMed  CAS  Google Scholar 

  136. Rathouz M, Trussel L (1998) Characterization of outward currents in neurons of the avian nucleus magnocellularis. J Neurophysiol 80:2824–2835

    PubMed  CAS  Google Scholar 

  137. Brew HM, Hallows JL, Tempel BL (2003) Hyperexcitability and reduced low threshold potassium currents in auditory neurons of mice lacking the channel subunit Kv1.1. J Physiol 548:1–20

    Article  PubMed  CAS  Google Scholar 

  138. Pál B, Rusznák Z, Harasztosi CS, Szűcs G (2004) Depolarization-activated K+ currents of the bushy neurones of the rat cochlear nucleus in a thin brain slice preparation. Acta Physiol Hun 91:83–98

    Article  Google Scholar 

  139. Moore EJ, Hall DB, Narahashi T (1996) Sodium and potassium currents of type I spiral ganglion cells from rat. Acta Otolaryngol 116:552–560

    Article  PubMed  CAS  Google Scholar 

  140. Sheppard DN, Valverde MA, Represa J, Giraldez F (1992) Transient outward currents in cochlear ganglion neurons of the chick embryo. Neuroscience 51:631–639

    Article  PubMed  CAS  Google Scholar 

  141. Valverde MA, Sheppard DN, Represa J, Giraldez F (1992) Development of Na+ - and K+ -currents in the cochlear ganglion of the chick embryo. Neuroscience 51:621–630

    Article  PubMed  CAS  Google Scholar 

  142. Rusznák Z, Forsythe ID, Brew HM, Stanfiled PR (1997) Membrane current influencing action potential latency in granule neurons of the rat cochlear nucleus. Eur J Neurosci 9:2348–2358

    Article  PubMed  Google Scholar 

  143. Lopez-Barneo J, Llinás R (1988) Electrophysiology of mammalian tectal neurones in vitro. I. Transient ionic conductances. J Neurophysiol 60:853–868

    PubMed  CAS  Google Scholar 

  144. Rogawski MA (1985) The A-current: how ubiquitous a feature of excitable cells is? Trends Neurosci 8:214–219

    Article  Google Scholar 

  145. Mo ZL, Davis RL (1997) Heterogeneous voltage dependence of inward rectifier currents in spiral ganglion neurons. J Neurophysiol 78:3019–3027

    PubMed  CAS  Google Scholar 

  146. Pape H-C, McCormick DA (1989) Noradrenalin and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature 340:715–718

    Article  PubMed  CAS  Google Scholar 

  147. McCormick DA, Huguenard IR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68:1384–1400

    PubMed  CAS  Google Scholar 

  148. Erickson KR, Ronnekleiv OK, Kelly MJ (1993) Electrophysiology of guinea-pig supraoptic neurones: role of a hyperpolarization-activated cation current in phasic firing. J Physiol 460:407–425

    PubMed  CAS  Google Scholar 

  149. Bal T, McCormick DA (1997) Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current Ih. J Neurophysiol 77:3145–3156

    PubMed  CAS  Google Scholar 

  150. McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431:291–318

    PubMed  CAS  Google Scholar 

  151. Pál B, Pór Á, Szűcs G, Kovács I, Rusznák Z (2003) HCN channels contribute to the intrinsic activity of cochlear pyramidal cells. Cell Mol Life Sci 60:2189–2199

    Article  PubMed  CAS  Google Scholar 

  152. Hossain WA, Antic SD, Yang Y, Rasband MN, Morest DK (2005) Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea. J Neurosci 25:6857–6868

    Article  PubMed  CAS  Google Scholar 

  153. Couloigner V, Fay M, Djelidi S, Farman N, Escoubet B, Runembert I, Sterkers O, Friedlander G, Ferrary E (2001) Location and function of the epithelial Na channel in the cochlea. Am J Physiol Renal Physiol 280:F214–F222

    PubMed  CAS  Google Scholar 

  154. Zhong SX, Liu ZH (2004) Immunohistochemical localization of the epithelial sodium channel in the rat inner ear. Hear Res 193:1–8

    Article  PubMed  CAS  Google Scholar 

  155. Peng BG, Ahmad S, Chen S, Chen P, Price MP, Lin X (2004) Acid-sensing ion channel 2 contributes a major component to acid-evoked excitatory responses in spiral ganglion neurons and plays a role in noise susceptibility of mice. J Neurosci 24:10167–10175

    Article  PubMed  CAS  Google Scholar 

  156. Hisashi K, Nakagawa T, Yasuda T, Kimitsuki T, Komune S, Komiyama S (1995) Voltage-dependent Ca2+ channels in the spiral ganglion cells of guinea pig cochlea. Hear Res 91:196–201

    Article  PubMed  CAS  Google Scholar 

  157. Yamaguchi K, Ohmori H (1990) Voltage-gated and chemically gated ionic channels in the cultured cochlear ganglion neurone of the chick. J Physiol 420:185–206

    PubMed  CAS  Google Scholar 

  158. Jiménez C, Giraldez F, Represa J, Garcia-Diaz JF (1997) Calcium currents in dissociated cochlear neurons from the chick embryo and their modification by neurotrophin-3. Neuroscience 77:673–682

    Article  PubMed  Google Scholar 

  159. Lopez I, Ishiyama G, Acuna D, Ishiyama A, Baloh RW (2003) Immunolocalization of voltage-gated calcium channel α1 subunits in the chinchilla cochlea. Cell Tissue Res 313:177–186

    Article  PubMed  CAS  Google Scholar 

  160. Morton-Jones RT, Cannell MB, Jeyakumar LH, Fleischer S, Housley GD (2006) Differential expression of ryanodine receptors in the rat cochlea. Neuroscience 137:275–286

    Article  PubMed  CAS  Google Scholar 

  161. Balaban CD, Zhou J, Li HS (2003) Type 1 vanilloid receptor expression by mammalian inner ear ganglion cells. Hear Res 175:165–170

    Article  PubMed  CAS  Google Scholar 

  162. Zheng J, Dai C, Steyger PS, Kim Y, Vass Z, Ren T, Nuttall AL (2003) Vanilloid receptors in hearing: altered cochlear sensitivity by vanilloids and expression of TRPV1 in the organ of Corti. J Neurophysiol 90:444–445

    Article  PubMed  CAS  Google Scholar 

  163. Kitahara T, Li HS, Balaban CD (2005) Changes in transient receptor potential cation channel superfamily V (TRPV) mRNA expression in the mouse inner ear ganglia after kanamycin challenge. Hear Res 201:132–144

    Article  PubMed  CAS  Google Scholar 

  164. Takumida M, Kubo N, Ohtani M, Suzuka Y, Anniko M (2005) Transient receptor potential channels in the inner ear: presence of transient receptor potential channel subfamily 1 and 4 in the guinea pig inner ear. Acta Otolaryngol 125:929–934

    Article  PubMed  Google Scholar 

  165. Shen J, Harada N, Kubo N, Liu B, Mizuno A, Suzuki M, Yamashita T (2006) Functional expression of transient receptor potential vanilloid 4 in the mouse cochlea. NeuroReport 17:135–139

    Article  PubMed  CAS  Google Scholar 

  166. Bauer CA, Brozoski TJ, Myers KS (2007) Acoustic injury and TRPV1 expression in the cochlear spiral ganglion. Int Tinnitus J 13:21–28

    PubMed  CAS  Google Scholar 

  167. Hibino H, Horio Y, Fujita A, Inanobe A, Doi K, Gotow T, Uchiyama Y, Kubo T, Kurachi Y (1999) Expression of an inwardly rectifying K+ channel, Kir4.1, in satellite cells of the rat cochlear ganglia. Am J Physiol 277:C638–C644

    PubMed  CAS  Google Scholar 

  168. Rozengurt N, Lopez I, Chiu CS, Kofuji P, Lester HA, Neusch C (2003) Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit. Hear Res 177:71–80

    Article  PubMed  CAS  Google Scholar 

  169. Jin Z, Wei D, Jarlebark L (2006) Developmental expression and localization of KCNJ10 K+ channels in the guinea pig inner ear. NeuroReport 17:475–479

    Article  PubMed  CAS  Google Scholar 

  170. Kanjhan R, Balke CL, Housley GD, Bellingham MC, Noakes PG (2004) Developmental expression of two-pore domain K+ channels, TASK-1 and TREK-1, in the rat cochlea. NeuroReport 15:437–441

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Drs. G. Bakondi and B. Pál for reviewing and commenting on the manuscript. The authors are most grateful to Dr. B. Pál for preparing the hand-drawn illustrations, and to two unnamed reviewers whose professional and helpful suggestions and comments were very useful. This work was supported by grants from the Hungarian Scientific Research Fund (OTKA K-72812, NK-61412).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Rusznák.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusznák, Z., Szűcs, G. Spiral ganglion neurones: an overview of morphology, firing behaviour, ionic channels and function. Pflugers Arch - Eur J Physiol 457, 1303–1325 (2009). https://doi.org/10.1007/s00424-008-0586-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0586-2

Keywords

Navigation