Skip to main content
Log in

Predictive coding accounts for V1 response properties recorded using reverse correlation

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

PC/BC (“Predictive coding/Biased competition”) is a simple computational model that has previously been shown to explain a very wide range of V1 response properties. This article extends work on the PC/BC model of V1 by showing that it can also account for V1 response properties measured using the reverse correlation methodology. Reverse correlation employs an experimental procedure that is significantly different from that used in more typical neurophysiological experiments, and measures some distinctly different response properties in V1. Despite these differences PC/BC successfully accounts for the data. The current results thus provide additional support for the PC/BC model of V1 and further demonstrate that PC/BC offers a unified explanation for the seemingly diverse range of behaviours observed in primary visual cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bredfeldt CE, Ringach DL (2002) Dynamics of spatial frequency tuning in macaque V1. J Neurosci 22(5): 1976–1984

    PubMed  CAS  Google Scholar 

  • Chen G, Dan Y, Li C-Y (2005) Stimulation of non-classical receptive field enhances orientation selectivity in the cat. J Physiol 564(1): 233–243

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Han F, Poo M-M, Dan Y (2007) Excitatory and suppressive receptive field subunits in awake monkey primary visual cortex (V1). Proc Natl Acad Sci USA 104(48): 19120–19125

    Article  PubMed  CAS  Google Scholar 

  • Chichilnisky EJ (2001) A simple white noise analysis of neuronal light responses. Network 12: 199–213

    PubMed  CAS  Google Scholar 

  • Daugman JG (1980) Two-dimensional spectral analysis of cortical receptive field profiles. Vision Res 20: 847–856

    Article  PubMed  CAS  Google Scholar 

  • Daugman JG (1988) Complete discrete 2-D Gabor transformations by neural networks for image analysis and compression. IEEE Trans Acoust 36(7): 1169–1179

    Article  Google Scholar 

  • De Valois RL, Cottaris NP, Mahon LE, Elfar SD, Wilson JA (2000) Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity. Vision Res 40(27): 3685–3702

    Article  PubMed  CAS  Google Scholar 

  • DeAngelis GC, Ohzawa I, Freeman RD (1993) Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. I. General characteristics and postnatal development. J Neurophysiol 69: 1091–1117

    PubMed  CAS  Google Scholar 

  • DeAngelis GC, Ohzawa I, Freeman RD (1995) Receptive-field dynamics in the central visual pathways. Trends Neurosci 18(10): 451–458

    Article  PubMed  CAS  Google Scholar 

  • Fairhall AL, Burlingame CA, Narasimhan R, Harris RA, Puchalla JL, Berry MJ (2006) Selectivity for multiple stimulus features in retinal ganglion cells. J Neurophysiol 96: 2724–2738

    Article  PubMed  Google Scholar 

  • Felsen G, Shen YS, Yao H, Spor G, Li C, Dan Y (2002) Dynamic modification of cortical orientation tuning mediated by recurrent connections. Neuron 36(5): 945–954

    Article  PubMed  CAS  Google Scholar 

  • Felsen G, Touryan J, Han F, Dan Y (2005) Cortical sensitivity to visual features in natural scenes. PLoS Biol 3(10): e342

    Article  PubMed  Google Scholar 

  • Jehee JFM, Ballard DH (2009) Predictive feedback can account for biphasic responses in the lateral geniculate nucleus. PLoS Comput Biol 5(5): e1000373

    Article  PubMed  Google Scholar 

  • Jones JP, Palmer LA (1987) An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J Neurophysiol 58(6): 1233–1258

    PubMed  CAS  Google Scholar 

  • Jones JP, Palmer LA (1987) The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J Neurophysiol 58(6): 1187–1211

    PubMed  CAS  Google Scholar 

  • Lee TS (1996) Image representation using 2D Gabor wavelets. IEEE Trans Pattern Anal Mach Intell 18(10): 959–971

    Article  Google Scholar 

  • Marcelja S (1980) Mathematical description of the responses of simple cortical cells. J Opt Soc Am A 70: 1297–1300

    Article  CAS  Google Scholar 

  • Mazer JA, Vinje WE, McDermott J, Schiller PH, Gallant JL (2002) Spatial frequency and orientation tuning dynamics in area V1. Proc Natl Acad Sci USA 99(3): 1645–1650

    Article  PubMed  CAS  Google Scholar 

  • Neri P, Heeger DJ (2002) Spatiotemporal mechanisms for detecting and identifying image features in human vision. Nat Neurosci 5(8): 812–816

    PubMed  CAS  Google Scholar 

  • Nykamp DQ, Ringach DL (2002) Full identification of a linear-nonlinear system via cross-correlation analysis. J Vis 2: 1–11

    Article  PubMed  Google Scholar 

  • Reid RC, Victor JD, Shapley RM (1997) The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Vis Neurosci 14: 1015–1027

    Article  PubMed  CAS  Google Scholar 

  • Ringach D, Shapley R (2004) Reverse correlation in neurophysiology. Cogn Sci 28(2): 147–166

    Article  Google Scholar 

  • Ringach DL (2002) Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J Neurophysiol 88(1): 455–463

    PubMed  Google Scholar 

  • Ringach DL (2004) Mapping receptive fields in primary visual cortex. J Physiol 558(3): 717–728

    Article  PubMed  CAS  Google Scholar 

  • Ringach DL, Hawken MJ, Shapley R (1997a) Dynamics of orientation tuning in macaque primary visual cortex. Nature 387: 281–284

    Article  PubMed  CAS  Google Scholar 

  • Ringach DL, Hawken MJ, Shapley R (2002) Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences. J Vis 2: 12–24

    Article  PubMed  Google Scholar 

  • Ringach DL, Hawken MJ, Shapley R (2003) Dynamics of orientation tuning in macaque V1: The role of global and tuned suppression. J Neurophysiol 90(1): 342–352

    Article  PubMed  Google Scholar 

  • Ringach DL, Sapiro G, Shapley R (1997b) A subspace reverse correlation method for the study of visual neurons. Vis Res 37: 2455–2464

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, O., Pillow JW, Rust NC, Simoncelli EP (2006) Spike-triggered neural characterization. J Vis 6(4):484–507

    Google Scholar 

  • Shapley R, Hawken M, Ringach DL (2003) Dynamics of orientation selectivity in the primary visual cortex and the importance of cortical inhibition. Neuron 38(5): 689–699

    Article  PubMed  CAS  Google Scholar 

  • Sharpee TO, Miller KD, Stryker MP (2008) On the importance of static nonlinearity in estimating spatiotemporal neural filters with natural stimuli. J Neurophysiol 99(5): 2496–2509

    Article  PubMed  Google Scholar 

  • Sharpee TO, Rust NC, Bialek W (2004) Analysing neural responses to natural signals: maximally informative dimensions. Neural Comput 16: 223–250

    Article  PubMed  Google Scholar 

  • Sharpee TO, Victor JD (2009) Contextual modulation of v1 receptive fields depends on their satial symmetry. J Comput Neurosci 26: 203–218

    Article  PubMed  Google Scholar 

  • Smyth D, Tolhurst DJ, Thompson ID (2000) Simple-cell receptive field reconstruction from natural-scene stimuli in ferret primary visual cortex. J Physiol (Lond) 527:93–94

    Google Scholar 

  • Smyth D, Willmore B, Baker GE, Thompson ID, Tolhurst DJ (2003) The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation. J Neurosci 23: 4746–4759

    PubMed  CAS  Google Scholar 

  • Spratling MW (2010) Predictive coding as a model of response properties in cortical area V1. J Neurosci 30(9): 3531–3543

    Article  PubMed  CAS  Google Scholar 

  • Spratling MW (2011) A single functional model accounts for the distinct properties of suppression in cortical area V1. Vis Res 51(6): 563–576

    Article  PubMed  CAS  Google Scholar 

  • Spratling MW (2012). Unsupervised learning of generative and discriminative weights encoding elementary image components in a predictive coding model of cortical function. Neural Comput 24(1):64–103

    Google Scholar 

  • Touryan J, Felsen G, Dan Y (2005) Spatial structure of complex cell receptive fileds measured with natural images. Neuron 45: 781–791

    Article  PubMed  CAS  Google Scholar 

  • Usrey WM, Sceniak MP, Chapman B (2003) Receptive fields and response properties of neurons in layer 4 of ferret visual cortex. J Neurophysiol 89(2): 1003–1015

    Article  PubMed  Google Scholar 

  • Xing D, Shapley RM, Hawken MJ, Ringach DL (2005) Effect of stimulus size on the dynamics of orientation selectivity in macaque V1. J Neurophysiol 94(1): 799–812

    Article  PubMed  Google Scholar 

  • Xing D, Yeh C-I, Shapley RM (2010) Generation of black-dominant responses in V1 cortex. J Neurosci 30(40): 13504–13512

    Article  PubMed  CAS  Google Scholar 

  • Yeh C-I, Xing D, Williams PE, Shapley RM (2009) Stimulus ensemble and cortical layer determine V1 spatial receptive fields. Proc Natl Acad Sci USA 106(34): 14652–14657

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. Spratling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spratling, M.W. Predictive coding accounts for V1 response properties recorded using reverse correlation. Biol Cybern 106, 37–49 (2012). https://doi.org/10.1007/s00422-012-0477-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-012-0477-7

Keywords

Navigation