Skip to main content
Log in

Action understanding and active inference

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We have suggested that the mirror-neuron system might be usefully understood as implementing Bayes-optimal perception of actions emitted by oneself or others. To substantiate this claim, we present neuronal simulations that show the same representations can prescribe motor behavior and encode motor intentions during action–observation. These simulations are based on the free-energy formulation of active inference, which is formally related to predictive coding. In this scheme, (generalised) states of the world are represented as trajectories. When these states include motor trajectories they implicitly entail intentions (future motor states). Optimizing the representation of these intentions enables predictive coding in a prospective sense. Crucially, the same generative models used to make predictions can be deployed to predict the actions of self or others by simply changing the bias or precision (i.e. attention) afforded to proprioceptive signals. We illustrate these points using simulations of handwriting to illustrate neuronally plausible generation and recognition of itinerant (wandering) motor trajectories. We then use the same simulations to produce synthetic electrophysiological responses to violations of intentional expectations. Our results affirm that a Bayes-optimal approach provides a principled framework, which accommodates current thinking about the mirror-neuron system. Furthermore, it endorses the general formulation of action as active inference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Afraimovich V, Tristan I, Huerta R, Rabinovich MI (2008) Winnerless competition principle and prediction of the transient dynamics in a Lotka–Volterra model. Chaos 18(4): 043103

    Article  PubMed  Google Scholar 

  • Allison T, Puce A, McCarthy G (2000) Social perception from visual cues: role of the STS region. Trends Cogn Sci 4: 267–278

    Article  PubMed  Google Scholar 

  • Arbib MA (2008) From grasp to language: embodied concepts and the challenge of abstraction. J Physiol (Paris) 102(1–3): 4–20

    Article  Google Scholar 

  • Arbib MA (2010) Mirror system activity for action and language is embedded in the integration of dorsal and ventral pathways. Brain Lang 112(1): 12–24

    Article  PubMed  Google Scholar 

  • Ballard DH, Hinton GE, Sejnowski TJ (1983) Parallel visual computation. Nature 306: 21–26

    Article  PubMed  CAS  Google Scholar 

  • Battaglia FP, Sutherland GR, McNaughton BL (2004) Local sensory cues and place cell directionality: additional evidence of prospective coding in the hippocampus. J Neurosci 24(19): 4541–4550

    Article  PubMed  CAS  Google Scholar 

  • Bogacz R, Gurney K (2007) The basal ganglia and cortex implement optimal decision making between alternative actions. Neural Comput 19(2): 442–477

    Article  PubMed  Google Scholar 

  • Borghi AM, Gianelli C, Scorolli C (2010) Sentence comprehension: effectors and goals, self and others. An overview of experiments and implications for robotics. Front Neurorobot 4: 3 Jun 14

    Google Scholar 

  • Buccino G, Baumgaertner A, Colle L, Büchel C, Rizzolatti G, Binkofski F (2007) The neural basis for understanding non-intended actions. Neuroimage. 36(Suppl 2): T119–T127

    Article  PubMed  Google Scholar 

  • Burgess N, Barry C, O’Keefe J (2007) An oscillatory interference model of grid cell firing. Hippocampus 17(9): 801–812

    Article  PubMed  Google Scholar 

  • Butz M, Timmermann L, Gross J, Pollok B, Dirks M, Hefter H, Schnitzler A (2006) Oscillatory coupling in writing and writer’s cramp. J Physiol Paris 99(1): 14–20

    Article  PubMed  Google Scholar 

  • Clark CR, Geffen GM, Geffen LB (1989) Catecholamines and the covert orientation of attention in humans. Neuropsychologia 27: 131–139

    Article  PubMed  CAS  Google Scholar 

  • Coull JT (1998) Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol 55: 343–361

    Article  PubMed  CAS  Google Scholar 

  • Dalley JW, McGaughy J, O’Connell MT, Cardinal RN, Levita L, Robbins TW (2001) Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task. J Neurosci 21: 4908–4914

    PubMed  CAS  Google Scholar 

  • Davidson MC, Marrocco RT (2000) Local infusion of scopolamine into intraparietal cortex slows covert orienting in rhesus monkeys. J Neurophysiol 83: 1536–1549

    PubMed  CAS  Google Scholar 

  • Dayan P, Hinton GE, Neal RM (1995) The Helmholtz machine. Neural Comput 7: 889–904

    Article  PubMed  CAS  Google Scholar 

  • Decety J, Grèzes J, Costes N, Perani D, Jeannerod M, Procyk E, Grassi F, Fazio F (1997) Brain activity during observation of actions. Influence of action content and subject’s strategy. Brain 120: 1763–1777

    Article  PubMed  Google Scholar 

  • Del Giudice M, Manera V, Keysers C (2009) Programmed to learn? The ontogeny of mirror neurons. Dev Sci 12(2): 350–363

    Article  PubMed  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18: 193–222

    Article  PubMed  CAS  Google Scholar 

  • Di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91: 176–180

    PubMed  CAS  Google Scholar 

  • Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating?. Behav Brain Sci 11: 355–372

    Google Scholar 

  • Dragoi G, Buzsáki G (2006) Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50(1): 145–157

    Article  PubMed  CAS  Google Scholar 

  • Feldman AG (2009) New insights into action-perception coupling. Exp Brain Res 194(1): 39–58

    Article  PubMed  Google Scholar 

  • Feldman H, Friston K (2010) Attention, uncertainty and free-energy. Front Hum Neurosci 4: 215. doi:10.3389/fnhum.2010.00215

    Article  PubMed  Google Scholar 

  • Flanagan JR, Vetter P, Johansson RS, Wolpert DM (2003) Prediction precedes control in motor learning. Curr Biol 13(2): 146–150

    Article  PubMed  CAS  Google Scholar 

  • Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308: 662–667

    Article  PubMed  CAS  Google Scholar 

  • Frank MJ, Scheres A, Sherman SJ (2007) Understanding decision-making deficits in neurological conditions: insights from models of natural action selection. Philos Trans R Soc Lond B Biol Sci 362(1485): 1641–1654

    Article  PubMed  Google Scholar 

  • Friedman D, Cycowicz YM, Gaeta H (2001) The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neurosci Biobehav Rev 25: 355–373

    Article  PubMed  CAS  Google Scholar 

  • Fries P, Womelsdorf T, Oostenveld R, Desimone R (2008) The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4. J Neurosci 28(18): 4823–4835

    Article  PubMed  CAS  Google Scholar 

  • Friston K (2008) Hierarchical models in the brain. PLoS Comput Biol 4(11): e1000211

    Article  PubMed  Google Scholar 

  • Friston K (2009) The free-energy principle: a rough guide to the brain?. Trends Cogn Sci 13(7): 293–301

    Article  PubMed  Google Scholar 

  • Friston K, Kilner J, Harrison L (2006) A free energy principle for the brain. J Physiol (Paris) 100(1–3): 70–87

    Article  Google Scholar 

  • Friston KJ, Daunizeau J, Kiebel SJ (2009) Reinforcement learning or active inference?. PLoS One 4(7): e6421

    Article  PubMed  Google Scholar 

  • Friston KJ, Daunizeau J, Kilner J, Kiebel SJ (2010a) Action and behavior: a free-energy formulation. Biol Cybern 102(3): 227–260

    Article  PubMed  Google Scholar 

  • Friston K, Stephan K, Li B, Daunizeau J (2010b) Generalised filtering. Math Prob Eng. Article ID 621670

  • Frith CD, Frith U (1999) Interacting minds—a biological basis. Science 286: 1692–1695

    Article  PubMed  CAS  Google Scholar 

  • Gallese V, Goldman A (1998) Mirror-neurons and the simulation theory of mind reading. Trends Cogn Sci 2: 493–501

    Article  PubMed  CAS  Google Scholar 

  • Gallese V, Fadiga L, Fogassi L, G Rizzolatti (1996) Action recognition in the premotor cortex. Brain 119: 593–609

    Article  PubMed  Google Scholar 

  • Geisler C, Diba K, Pastalkova E, Mizuseki K, Royer S, Buzsáki G (2010) Temporal delays among place cells determine the frequency of population theta oscillations in the hippocampus. Proc Natl Acad Sci USA 107(17): 7957–7962

    Article  PubMed  CAS  Google Scholar 

  • Gómez CM, Flores A, Digiacomo MR, Ledesma A, González-Rosa J (2008) P3a and P3b components associated to the neurocognitive evaluation of invalidly cued targets. Neurosci Lett 430: 181–185

    Article  PubMed  Google Scholar 

  • Grafton ST, Hamilton AF (2007) Evidence for a distributed hierarchy of action representation in the brain. Hum Mov Sci 26(4): 590–616

    Article  PubMed  Google Scholar 

  • Graziano MS (1999) Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position. Proc Natl Acad Sci USA 96(18): 10418–10421

    Article  PubMed  CAS  Google Scholar 

  • Graziano M (2006) The organization of behavioral repertoire in motor cortex. Annu Rev Neurosci 29: 105–134

    Article  PubMed  CAS  Google Scholar 

  • Gregory RL (1968) Perceptual illusions and brain models. Proc R Soc Lond B 171: 179–196

    Article  Google Scholar 

  • Gregory RL (1980) Perceptions as hypotheses. Phil Trans R Soc Lond B 290: 181–197

    Article  CAS  Google Scholar 

  • Grèzes J, Fonlupt P, Bertenthal B, Delon-Martin C, Segebarth C, Decety J (2001) Does perception of biological motion rely on specific brain regions?. Neuroimage 13: 775–785

    Article  PubMed  Google Scholar 

  • Grossman E, Donnelly M, Price R, Pickens D, Morgan V, Neighbor G, Blake R (2000) Brain areas involved in perception of biological motion. J Cogn Neurosci 12: 711–720

    Article  PubMed  CAS  Google Scholar 

  • Hamilton AF, Grafton ST (2006) Goal representation in human anterior intraparietal sulcus. J Neurosci 26: 1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Hasselmo ME, Giocomo LM (2006) Cholinergic modulation of cortical function. J Mol Neurosci 30(1–2): 133–135

    Article  PubMed  CAS  Google Scholar 

  • Hazy TE, Frank MJ, O’reilly RC (2007) Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philos Trans R Soc Lond B Biol Sci 362(1485): 1601–1613

    Article  PubMed  Google Scholar 

  • Herrero JL, Roberts MJ, Delicato LS, Gieselmann MA, Dayan P, Thiele A (2008) Acetylcholine contributes through muscarinic receptors to attentional modulation in V1. Nature 454: 1110–1114

    Article  PubMed  CAS  Google Scholar 

  • Ijspeert JA, Nakanishi J, Schaal S (2002) Movement imitation with nonlinear dynamical systems in humanoid robots. In International Conference on Robotics and Automation (ICRA 2002), pp 1398–1403

  • Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18(7): 314–320

    Article  PubMed  CAS  Google Scholar 

  • Jerbi K, Lachaux JP, N’Diaye K, Pantazis D, Leahy RM, Garnero L, Baillet S (2007) Coherent neural representation of hand speed in humans revealed by MEG imaging. Proc Natl Acad Sci USA 104(18): 7676–7681

    Article  PubMed  CAS  Google Scholar 

  • Keysers C, Perrett DI (2004) Demystifying social cognition: a Hebbian perspective. Trends Cogn Sci 8: 501–507

    Article  PubMed  Google Scholar 

  • Keysers C, Kaas JH, Gazzola V (2010) Somatosensation in social perception. Nat Rev Neurosci 11(6): 417–428

    Article  PubMed  CAS  Google Scholar 

  • Kiebel SJ, von Kriegstein K, Daunizeau J, Friston KJ (2009a) Recognizing sequences of sequences. PLoS Comput Biol 5(8): e1000464

    Article  PubMed  Google Scholar 

  • Kiebel SJ, Daunizeau J, Friston KJ (2009b) Perception and hierarchical dynamics. Front Neuroinf 3: 20

    Google Scholar 

  • Kilner JM, Vargas C, Duval S, Blakemore S-J, Sirigu A (2004) Motor activation prior to observation of a predicted movement. Nat Neurosci 7: 1299–1301

    Article  PubMed  CAS  Google Scholar 

  • Kilner JM, Friston KJ, Frith CD (2007a) Predictive coding: an account of the mirror neuron system. Cogn Process 8(3): 159–166

    Article  PubMed  Google Scholar 

  • Kilner JM, Friston KJ, Frith CD (2007b) The mirror-neuron system: a Bayesian perspective. Neuroreport 18(6): 619–623

    Article  PubMed  Google Scholar 

  • Lee J, Fowler R, Rodney D, Cherney L, Small SL (2010) IMITATE: an intensive computer-based treatment for aphasia based on action observation and imitation. Aphasiology 24(4): 449–465

    Article  PubMed  Google Scholar 

  • Longcamp M, Tanskanen T, Hari R (2006) The imprint of action: motor cortex involvement in visual perception of handwritten letters. Neuroimage 33(2): 681–688

    Article  PubMed  CAS  Google Scholar 

  • Luppino G, Murata A, Govoni P, Matelli M (1999) Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Exp Brain Res 128: 181–187

    Article  PubMed  CAS  Google Scholar 

  • Mangun GR, Hillyard SA (1991) Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. J Exp Psychol Hum Percept Perform 17: 1057–1074

    Article  PubMed  CAS  Google Scholar 

  • Miall RC (2003) Connecting mirror neurons and forward models. Neuroreport 14(17): 2135–2137

    Article  PubMed  CAS  Google Scholar 

  • Miura N, Sugiura M, Takahashi M, Sassa Y, Miyamoto A, Sato S, Horie K, Nakamura K, Kawashima R (2010) Effect of motion smoothness on brain activity while observing a dance: An fMRI study using a humanoid robot. Soc Neurosci 5(1): 40–58

    Article  PubMed  Google Scholar 

  • Mumford D (1992) On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biol Cybern 66: 241–251

    Article  PubMed  CAS  Google Scholar 

  • Näätänen R, Tervaniemi M, Sussman E, Paavilainen P, Winkler I (2001) “Primitive intelligence” in the auditory cortex. Trends Neurosci 24: 283–288

    Article  PubMed  Google Scholar 

  • Namikawa J, Tani J (2010) Learning to imitate stochastic time series in a compositional way by chaos. Neural Netw 23(5): 625–638

    Article  PubMed  Google Scholar 

  • O’Keefe J (1999) Do hippocampal pyramidal cells signal non-spatial as well as spatial information?. Hippocampus 9(4): 352–364

    Article  PubMed  Google Scholar 

  • Oram MW, Perrett DI (1994) Responses of anterior superior temporal polysensory (STPa) neurons to biological motion stimuli. J Cogn Neurosci 6: 99–116

    Article  Google Scholar 

  • Porr B, Wörgötter F (2003) Isotropic sequence order learning. Neural Comput 15(4): 831–864

    Article  PubMed  Google Scholar 

  • Rabinovich M, Huerta R, Laurent G (2008) Neuroscience. Transient dynamics for neural processing. Science 321(5885): 48–50

    Article  PubMed  CAS  Google Scholar 

  • Rao RP, Ballard DH (1998) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive field effects. Nat Neurosci 2: 79–87

    Article  Google Scholar 

  • Reynolds JH, Heeger DJ (2009) The normalization model of attention. Neuron 61(2): 168–185

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27: 169–192

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2: 661–670

    Article  PubMed  CAS  Google Scholar 

  • Salinas E, Sejnowski TJ (2001) Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7(5): 430–440

    Article  PubMed  CAS  Google Scholar 

  • Schaal S, Mohajerian P, Ijspeert A (2007) Dynamics systems vs. optimal control: a unifying view. Prog Brain Res 165: 425–445

    Article  PubMed  Google Scholar 

  • Schroeder CE, Mehta AD, Foxe JJ (2001) Determinants and mechanisms of attentional modulation of neural processing. Front Biosci 6: D672–D684

    Article  PubMed  CAS  Google Scholar 

  • Singer Y, Tishby N (1994) Dynamical encoding of cursive handwriting. Biol Cybern 71(3): 227–237

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Shibuya T, Kato M, Sassa T, Koeda M, Yahata N, Suhara T, Okubo Y (2008) Enhanced activation in the extrastriate body area by goal-directed actions. Psychiatry Clin Neurosci 62(2): 214–219

    Article  PubMed  Google Scholar 

  • Tani J (2003) Learning to generate articulated behavior through the bottom-up and the top-down interaction processes. Neural Netw 16(1): 11–23

    Article  PubMed  Google Scholar 

  • Tani J, Ito M, Sugita Y (2004) Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiments using RNNPB. Neural Netw 17(8–9): 1273–1289

    Article  PubMed  Google Scholar 

  • Todorov E, Li W, Pan X (2005) From task parameters to motor synergies: a hierarchical framework for approximately-optimal control of redundant manipulators. J Robot Syst 22(11): 691–710

    Article  PubMed  Google Scholar 

  • Tsodyks M (1999) Attractor neural network models of spatial maps in hippocampus. Hippocampus 9(4): 481–489

    Article  PubMed  CAS  Google Scholar 

  • Umilta MA, Kohler E, Gallesse V, Fogassi L, Fadiga L, Keysers C, Rizzolatti G (2001) I know what you are doing. A neurophysiological study. Neuron 31: 155–165

    Article  PubMed  CAS  Google Scholar 

  • Verschure T, Voegtlin PF, Douglas RJ (2003) Environmentally mediated synergy between perception and behavior in mobile robots. Nature 425: 620–624

    Article  PubMed  CAS  Google Scholar 

  • Voytko ML, Olton DS, Richardson RT, Gorman LK, Tobin JR, Price DL (1994) Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J Neurosci 14: 167–186

    PubMed  CAS  Google Scholar 

  • Weber C, Wermter S, Elshaw M (2006) A hybrid generative and predictive model of the motor cortex. Neural Netw 19(4): 339–353

    Article  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269: 1880–1882

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Doya K, Kawato M (2003) A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci 358: 593–602

    Article  PubMed  Google Scholar 

  • Wörgötter F, Porr B (2005) Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 17(2): 245–319

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Friston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friston, K., Mattout, J. & Kilner, J. Action understanding and active inference. Biol Cybern 104, 137–160 (2011). https://doi.org/10.1007/s00422-011-0424-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-011-0424-z

Keywords

Navigation