Skip to main content

Advertisement

Log in

The quantitative single-neuron modeling competition

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

As large-scale, detailed network modeling projects are flourishing in the field of computational neuroscience, it is more and more important to design single neuron models that not only capture qualitative features of real neurons but are quantitatively accurate in silico representations of those. Recent years have seen substantial effort being put in the development of algorithms for the systematic evaluation and optimization of neuron models with respect to electrophysiological data. It is however difficult to compare these methods because of the lack of appropriate benchmark tests. Here, we describe one such effort of providing the community with a standardized set of tests to quantify the performances of single neuron models. Our effort takes the form of a yearly challenge similar to the ones which have been present in the machine learning community for some time. This paper gives an account of the first two challenges which took place in 2007 and 2008 and discusses future directions. The results of the competition suggest that best performance on data obtained from single or double electrode current or conductance injection is achieved by models that combine features of standard leaky integrate-and-fire models with a second variable reflecting adaptation, refractoriness, or a dynamic threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Achard P, De Schutter E (2006) Complex parameter landscape for a complex neuron model. PLoS Comp Biol 2(7): e94

    Article  Google Scholar 

  • Arcas B, Fairhall A (2003) What causes a neuron to spike. Neural Comp 15: 1789–1807

    Article  Google Scholar 

  • Aronov D, Victor JD (2004) Non-euclidean properties of spike train metric spaces. Phys Rev E 69: 061,905

    Article  Google Scholar 

  • Badel L, Lefort S, Brette R, Petersen CCH, Gerstner W, Richardson MJE (2008) Dynamic IV curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J Neurophysiol 99(2): 656–666

    Article  PubMed  Google Scholar 

  • Bower JM, Beeman D (1995) The book of Genesis. Springer, New York

    Google Scholar 

  • Brette R, Gerstner W (2005) Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal Activity

  • Brillinger DR (1988a) Maximum likelihood analysis of spike trains of interacting nerve cells. Biol Cybern 59: 189–200

    Article  CAS  PubMed  Google Scholar 

  • Brillinger DR (1988b) The maximum likelihood approach to the identification of neuronal firing systems. Ann Biomed Eng 16: 3–16

    Article  CAS  PubMed  Google Scholar 

  • Brillinger DR, Segundo JP (1979) Empirical examination of the threshold model of neuronal firing. Biol Cybern 35: 213–220

    Article  CAS  PubMed  Google Scholar 

  • Brunel N, Hakim V, Richardson MJE (2003) Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance. Phys Rev E 67: 051,916

    Article  Google Scholar 

  • Bush K, Knight J, Anderson C (2005) Optimizing conductance parameters of cortical neural models via electrotonic partitions. Neural Net 18(5–): 488–496

    Article  Google Scholar 

  • Carandini M, Horton JC, Sincich LC (2007) Thalamic filtering of retinal spike trains by postsynaptic summation. J Vision 7(14): 20

    Article  Google Scholar 

  • Clopath C, Jolivet R, Rauch A, Lüscher HR, Gerstner W (2007) Predicting neuronal activity with simple models of the threshold type: Adaptive Exponential Integrate-and-Fire model with two compartments. Neurocomputing 70(10–2): 1668–1673

    Article  Google Scholar 

  • Druckmann S, Banitt Y, Gidon A, Schürmann F, Markram H, Segev I (2007) A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Front Neurosci 1: 7–18

    Article  PubMed  Google Scholar 

  • Fourcaud-Trocmé N, Hansel D, van Vreeswijk C, Brunel N (2003) How spike generation mechanisms determine the neuronal response to fluctuating inputs. J Neurosci 23: 11,628–11,640

    Google Scholar 

  • Geisler WS, Albrecht DG, Salvi RJ, Saunders SS (1991) Discrimination performance of single neurons: rate and temporal information. J Neurophysiol 66: 334–362

    CAS  PubMed  Google Scholar 

  • Gerken WC, Purvis LK, Butera RJ (2006) Genetic algorithm for optimization and specification of a neuron model. Neurocomputing 69(10–2): 1039–1042

    Article  Google Scholar 

  • Gerstner W, Kistler WM (2002) Spiking neuron models. Cambridge University Press, Cambridge

    Google Scholar 

  • Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383: 76–78

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (London) 117: 500–544

    CAS  Google Scholar 

  • Hopfield JJ (1995) Pattern recognition computation using action potential timing for stimulus representation. Nature 376: 33–36

    Article  CAS  PubMed  Google Scholar 

  • Huys QJM, Ahrens MB, Paninski L (2006) Efficient estimation of detailed single-neuron models. J Neurophysiol 96: 872–890

    Article  PubMed  Google Scholar 

  • Izhikevich EM (2004) Which model to use for cortical spiking neurons. IEEE Trans Neural Net 15: 1063–1070

    Article  Google Scholar 

  • Izhikevich EM, Edelman GM (2008) Large-scale model of mammalian thalamocortical systems. PNAS 105(9): 3593–3598

    Article  CAS  PubMed  Google Scholar 

  • Jolivet R, Gerstner W (2004) Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival. J Physiol-Paris 98(4–): 442–451

    Article  PubMed  Google Scholar 

  • Jolivet R, Lewis TJ, Gerstner W (2004) Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J Neurophysiol 92(2): 959–976

    Article  PubMed  Google Scholar 

  • Jolivet R, Rauch A, Lüscher HR, Gerstner W (2006a) Integrate-and-Fire models with adaptation are good enough: predicting spike times under random current injection. Adv Neural Inform Process Syst 18: 595–602

    Google Scholar 

  • Jolivet R, Rauch A, Lüscher HR, Gerstner W (2006b) Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J Comput Neurosci 21(1): 35–49

    Article  PubMed  Google Scholar 

  • Jolivet R, Kobayashi R, Rauch A, Naud R, Shinomoto S, Gerstner W (2008) A benchmark test for a quantitative assessment of simple neuron models. J Neurosci Meth 169(2): 417–424

    Article  Google Scholar 

  • Keat J, Reinagel P, Reid RC, Meister M (2001) Predicting every spike: a model for the responses of visual neurons. Neuron 30: 803–817

    Article  CAS  PubMed  Google Scholar 

  • Kempter R, Gerstner W, van Hemmen JL, Wagner H (1998) Extracting oscillations: neuronal coincidence detection with noisy periodic spike input. Neural Comp 10: 1987–2017

    Article  CAS  Google Scholar 

  • Keren N, Peled N, Korngreen A (2005) Constraining compartmental models using multiple voltage recordings and genetic algorithms. J Neurophysiol 94(6): 3730–3742

    Article  PubMed  Google Scholar 

  • Kistler WM, Gerstner W, van Hemmen JL (1997) Reduction of Hodgkin-Huxley equations to a single-variable threshold model. Neural Comp 9: 1015–1045

    Article  Google Scholar 

  • Kobayashi R, Shinomoto S (2007) State space method for predicting the spike times of a neuron. Phys Rev E 75(1): 11,925

    Article  Google Scholar 

  • La Camera G, Rauch A, Lüscher HR, Senn W, Fusi S (2004) Minimal models of adapted neuronal response to in vivo-like input currents. Neural Comp 16: 2101–2124

    Article  Google Scholar 

  • Lansky P, Sanda P, He J (2006) The parameters of the stochastic leaky integrate-and-fire neuronal model. J Comput Neurosci 21(2): 211–223

    Article  PubMed  Google Scholar 

  • Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398(6725): 338–341

    Article  CAS  PubMed  Google Scholar 

  • Larkum ME, Senn W, Lüscher HR (2004) Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cereb Cortex 14: 1059–1070

    Article  PubMed  Google Scholar 

  • Leibold C, Gundlfinger A, Schmidt R, Thurley K, Schmitz D, Kempter R (2008) Temporal compression mediated by short-term synaptic plasticity. PNAS 105(11): 4417

    Article  CAS  PubMed  Google Scholar 

  • MacLeod K, Backer A, Laurent G (1998) Who reads temporal information contained across synchronized and oscillatory spike trains. Nature 395: 693–698

    Article  CAS  PubMed  Google Scholar 

  • Markram H (2006) The blue brain project. Nat Rev Neurosci 7(2): 153–160

    Article  CAS  PubMed  Google Scholar 

  • Marmarelis VZ, Berger TW (2005) General methodology for nonlinear modeling of neural systems with Poisson point-process inputs. Math Biosci 196(1): 1–13

    Article  CAS  PubMed  Google Scholar 

  • Mullowney P, Iyengar S (2008) Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data. J Comput Neurosci 24: 179–194

    Article  PubMed  Google Scholar 

  • Paninski L, Pillow JW, Simoncelli EP (2005) Comparing integrate-and-fire models estimated using intracellular and extracellular data. Neurocomputing 65(66): 379–385

    Article  Google Scholar 

  • Pillow JW, Paninski L, Uzzell VJ, Simoncelli EP, Chichilnisky EJ (2005) Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. J Neurosci 25(47): 11,003–11,013

    Article  CAS  Google Scholar 

  • Prinz AA, Billimoria CP, Marder E (2003) Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J Neurophysiol 90(6): 3998–4015

    Article  PubMed  Google Scholar 

  • Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7(12): 1345–1352

    Article  CAS  PubMed  Google Scholar 

  • Rauch A, La Camera G, Lüscher HR, Senn W, Fusi S (2003) Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents. J Neurophysiol 90: 1598–1612

    Article  PubMed  Google Scholar 

  • van Rossum MCW (2001) A novel spike distance. Neural Comp 13: 751–763

    Article  Google Scholar 

  • Schaefer AT, Larkum ME, Sakmann B, Roth A (2003) Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J Neurophysiol 89(6): 3143–3154

    Article  PubMed  Google Scholar 

  • Song D, Chan RH, Marmarelis VZ, Hampson RE, Deadwyler SA, Berger TW (2007) Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses. IEEE Trans Biomed Eng 54: 1053–1066

    Article  PubMed  Google Scholar 

  • Vanier MC, Bower JM (1999) A comparative survey of automated parameter-search methods for compartmental neural models. J Comput Neurosci 7(2): 149–171

    Article  CAS  PubMed  Google Scholar 

  • Victor JD, Purpura KP (1996) Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol 76: 1310–1326

    CAS  PubMed  Google Scholar 

  • Victor JD, Purpura KP (1997) Metric-space analysis of spike trains: theory, algorithms and application. Netw Comp Neural Syst 8: 127–164

    Article  Google Scholar 

  • Wang Y, Gupta A, Toledo-Rodriguez M, Wu CZ, Markram H (2002) Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex 12: 395–410

    Article  PubMed  Google Scholar 

  • Weaver CM, Wearne SL (2006) The role of action potential shape and parameter constraints in optimization of compartment models. Neurocomputing 69(10–2): 1053–1057

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud Jolivet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jolivet, R., Schürmann, F., Berger, T.K. et al. The quantitative single-neuron modeling competition. Biol Cybern 99, 417–426 (2008). https://doi.org/10.1007/s00422-008-0261-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0261-x

Keywords

Navigation