Skip to main content
Log in

Neural control of Caenorhabditis elegans forward locomotion: the role of sensory feedback

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This paper presents a simple yet biologically-grounded model for the neural control of Caenorhabditis elegans forward locomotion. We identify a minimal circuit within the C. elegans ventral cord that is likely to be sufficient to generate and sustain forward locomotion in vivo. This limited subcircuit appears to contain no obvious central pattern generated control. For that subcircuit, we present a model that relies on a chain of oscillators along the body which are driven by local and proximate mechano-sensory input. Computer simulations were used to study the model under a variety of conditions and to test whether it is behaviourally plausible. Within our model, we find that a minimal circuit of AVB interneurons and B-class motoneurons is sufficient to generate and sustain fictive forward locomotion patterns that are robust to significant environmental perturbations. The model predicts speed and amplitude modulation by the AVB command interneurons. An extended model including D-class motoneurons is included for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bamber BA, Beg AA, Twyman RE and Jorgensen EM (1999). The Caenorhabditis elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. J Neurosci 19: 5348–5359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berri S, Boyle JH, Tassieri M, Hope IA, Cohen N (2008) The locomotion of nematodes: from swimming to crawling (to be submitted)

  • Boyle JH, Cohen N (2007) On the role of body wall muscles in C. elegans locomotion. In: Olde-Scheper T, Crook N (eds) Proceedings of IPCAT 2007, pp 363–375

  • Boyle JH, Bryden JA, Cohen N (2007) Integrated neuro-mechanical model of C. elegans forward locomotion. In: Proceedings of ICONIP 2007

  • Bryden JA (2003) A simulation model of the locomotion controllers for the nematode Caenorhabditis elegans. Master’s thesis, University of Leeds

  • Bryden JA, Cohen N (2004a) C. elegans at Leeds University, Biosystems Group. http://www.comp.leeds.ac.uk/celegans

  • Bryden JA, Cohen N (2004b) A simulation model of the locomotion controllers for the nematode Caenorhabditis elegans. In: Schaal S, Ijspeert AJ, Billard A, Vijayakumar S, Hallam J, Meyer JA (eds) Proceedings of the eighth international conference on the simulation of adaptive behavior, MIT Press/Bradford Books, pp 183–192

  • Bryden JA, Cohen N, Hope IA (2003) Video of C. elegans moving across agar. http://www.comp.leeds.ac.uk/celegans/agar.mov, digital video was taken at Ian Hope’s Laboratory, School of Biology, University of Leeds, LS2 9JT

  • Chalfie M and White JG (1988). The nervous system. In: Wood, WB (eds) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Chalfie M, Sulston JE, White JG, Southgate E, Thomson JN and Brenner S (1985). The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci 5(4): 956–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen BL, Hall DH and Chklovskii DB (2006). Wiring optimization can relate neuronal structure and function. Proc Natl Acad Sci USA 103: 4723–4728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cinar H, Keles S and Jin Y (2005). Expression profiling of GABAergic motor neurons in Caenorhabditis elegans. Curr Biol 22: 340–346

    Article  Google Scholar 

  • Culetto E, Baylis HA, Richmond JE, Jones AK, Fleming JT, Squire MD, Lewis JA and Sattelle DB (2004). The Caenorhabditis elegans unc-63 gene encodes a levamisole-sensitive nicotinic acetylcholine receptor α subunit. J Biol Chem 279: 42479–42483

    Article  Google Scholar 

  • Duerr JS, H-P H, D FS and B RJ (2008). Identification of major classes of cholinergic neurons in the nematode caenorhabditis elegans. J Comp Neurol 506: 398–408

    Article  CAS  PubMed  Google Scholar 

  • Dunn NA, Lockery SR, Pierce-Shimomura JT and Conery JS (2004). Neural network model of chemotaxis predicts functions of synaptic connections in the nematode Caenorhabditis elegans. J Comput Neurosci 17: 137–147

    Article  PubMed  Google Scholar 

  • Estevez M, Estevez AO, Cowie RH and Gardner KL (2004). The voltage-gated calcium channel UNC-2 is involved in stress-mediated regulation of tryptophan hydroxylase. J Neurochem 88: 102–113

    Article  CAS  PubMed  Google Scholar 

  • Ferrée TC (2003) Motivations for nemasys. http://www.csi.uoregon.edu/projects/celegans/nemasys/Motivation.htm

  • Ferrée TC, Lockery SR (1998) Chemotaxis control by linear recurrent networks. J Comput Neurosci Trends Res 373–377

  • Ferrée TC and Lockery SR (1999). Computational rules for chemotaxis in the nematode C. elegans. J Comput Neurosci 6: 263–277

    Article  PubMed  Google Scholar 

  • Ferrée TC, Marcotte BA and Lockery SR (1997). Neural network models of chemotaxis in the nematode Caenorhabditis elegans. Adv Neural Inform Process Systems 9: 55–61

    Google Scholar 

  • Fleming JT, Squire MD, Barnes TM, Tornoe C, Matsuda K, Ahnn J, Fire A, Sulston JE, Barnard EA, Sattelle DB and Lewis JA (1997). Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. J Neurosci 17: 5843–5857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis MM, Mellem JE and Maricq AV (2003). Bridging the gap between genes and behavior: recent advances in the electrophysiological analysis of neural function in Caenorhabditis elegans. TRENDS Neurosci 26: 90–99

    Article  CAS  PubMed  Google Scholar 

  • Goodman MB, Hall DH, Avery L and Lockery SR (1998). Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron 20: 763–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray JM, Hill JJ and Bargmann CI (2005). A circuit for navigation in Caenorhabditis elegans. Proc Natl Acad Sci USA 102: 3184–3191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin J (1983). Male phenotypes and mating efficiency in Caenorhabditis elegans. Genetics 103: 43–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karbowski J, Cronin CJ, Seah A, Mendel JE, Cleary D and Sternberg PW (2006). Conservation rules, their breakdown, and optimality in Caenorhabditis sinusoidal locomotion. J Theor Biol 242: 652–669

    Article  PubMed  Google Scholar 

  • Marder E (2000). Motor pattern generation. Curr Opin Neurobiol 10: 691–698

    Article  CAS  PubMed  Google Scholar 

  • Marder E and Bucher D (2001). Central pattern generators and the control of rhythmic movements. Curr Biol 11: 986–996

    Article  Google Scholar 

  • Marder E and Calabrese RL (1996). Principles of rhythmic motor pattern generation. Physiol Rev 76(3): 687–717

    Article  CAS  PubMed  Google Scholar 

  • Marder E, Bucher D, Schulz DJ and Taylor AL (2005). Invertebrate central pattern generation moves along. Curr Biol 15: 685–699

    Article  Google Scholar 

  • Mathews EA, Garcia E, Santi CM, Mullen GP, Thacker C, Moerman DG and Snutch TP (2003). Critical residues of the Caenorhabditis elegans unc-2 voltage-gated calcium channel that affect behavioral and physiological properties. J Neurosci 23: 6537–6545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntire SL, Jorgensen E and Horvitz HR (1993a). Genes required for GABA function in Caenorhabditis elegans. Nature 364: 334–337

    Article  CAS  PubMed  Google Scholar 

  • McIntire SL, Jorgensen E, Kaplan J and Horvitz HR (1993b). The GABAergic nervous system of Caenorhabditis elegans. Nature 364: 337–341

    Article  CAS  PubMed  Google Scholar 

  • Nickell WT, Pun RY, Bargmann CI and Kleene SJ (2002). Single ionic channels of two Caenorhabditis elegans chemosensory neurons in native membrane. J Membrane Biol 189: 55–66

    Article  CAS  Google Scholar 

  • Niebur E and Erdös P (1991). Theory of the locomotion of nematodes. Biophys J 60: 1132–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niebur E and Erdös P (1993). Modeling locomotion and its neural control in nematodes. Comments Theor Biol 3(2): 109–139

    Google Scholar 

  • Niebur E and Erdös P (1993). Theory of the locomotion of nematodes: control of the somatic motor neurons by interneurons. Mathe Biosci 118: 51–82

    Article  CAS  Google Scholar 

  • O’Hagan R, Chalfie M and Goodman MB (2005). The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nature Neurosci 8: 43–50

    Article  PubMed  Google Scholar 

  • Pearson K (2000). Motor systems. Curr Opin Neurobiol 10: 649–654

    Article  CAS  PubMed  Google Scholar 

  • Richmond JE and Jorgensen EM (1999). One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nature Neurosci 2: 791–797

    Article  CAS  PubMed  Google Scholar 

  • Sakata K and Shingai R (2004). Neural network model to generate head swing in locomotion of Caenorhabditis elegans. Netw Comput Neural Systems 15: 199–216

    Article  Google Scholar 

  • Stein PSG, Grillner S, Selverston AI and Stuart DG (1999). Neurons, networks, and motor behavior. MIT Press, Cambridge

    Google Scholar 

  • Suzuki H, Kerr R, Bianchi L, Frøkjær-Jensen C, Slone D, Xue J, Gerstbrein B, Driscoll M and Schafer WR (2003). In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 39: 1005–1017

    Article  CAS  PubMed  Google Scholar 

  • Tam T, Mathews E, Snutch TP and Schafer W (2000). Voltage-gated calcium channels direct neuronal migration in Caenorhabditis elegans. Develop Biol 226: 104–117

    Article  CAS  PubMed  Google Scholar 

  • Tavernarakis N, Shreffler W, Wang SL and Driscoll M (1997). unc-8, a DEG/ENaC family member, encodes a subunit of a candidate mechanically gated channel that modulates C. elegans locomotion. Neuron 18(1): 107–119

    Article  CAS  PubMed  Google Scholar 

  • Towers PR, Edwards B, Richmond JE and Sattelle DB (2005). The Caenorhabditis elegans lev-8 gene encodes a novel type of nicotinic acetylcholine receptor α subunit. J Neurochem 93: 1–9

    Article  CAS  PubMed  Google Scholar 

  • Tsalik EL and Hobert O (2003). Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. J Neurobiol 56: 178–197

    Article  PubMed  Google Scholar 

  • Von Stetina SE, Treinin M and Miller III DM (2005). The motor circuit. Intl Rev Neurobiol 69: 125–167

    Article  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1986a) Members: Vb1 to vb11. Online: http://www.wormatlas.org/MoW_built0.92/cells/vbn.html, viewed December 4, 2007

  • White JG, Southgate E, Thomson JN and Brenner S (1986). The structure of the nervous system of the nematode C. elegans (the mind of a worm). Philos Trans R Soc Lond Series B Biol Sci 314(1165): 1–34

    CAS  Google Scholar 

  • Wicks SR, Roehrig CJ and Rankin CH (1996). A dynamic network simulation of the nematode tap withdrawal circuit: predictions concerning synaptic function using behavioral criteria. J Neurosci 16: 4017–4031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood WB (1988). Introduction to C. elegans biology. In: Wood, WB (eds) The Nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Yanik MF, Cinarm H, Cinarm HN, Chisholm AD, Jin Y and Ben-Yakar A (2004). Neurosurgery: functional regeneration after laser axotomy. Nature 432: 822

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Netta Cohen.

Additional information

John Bryden and Netta Cohen contributed equally to this work.

Electronic Supplementary Material

Below are the Electronic Supplementary Materials.

ESM 1 (PDF 189 kb)

This file is unfortunately not in the Publisher's archive anymore: ESM 2 (TEX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryden, J., Cohen, N. Neural control of Caenorhabditis elegans forward locomotion: the role of sensory feedback. Biol Cybern 98, 339–351 (2008). https://doi.org/10.1007/s00422-008-0212-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0212-6

Keywords

Navigation