Skip to main content
Log in

Bayesian processing of vestibular information

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

An Erratum to this article was published on 20 March 2007

Abstract

Complex self-motion stimulations in the dark can be powerfully disorienting and can create illusory motion percepts. In the absence of visual cues, the brain has to use angular and linear acceleration information provided by the vestibular canals and the otoliths, respectively. However, these sensors are inaccurate and ambiguous. We propose that the brain processes these signals in a statistically optimal fashion, reproducing the rules of Bayesian inference. We also suggest that this processing is related to the statistics of natural head movements. This would create a perceptual bias in favour of low velocity and acceleration. We have constructed a Bayesian model of self-motion perception based on these assumptions. Using this model, we have simulated perceptual responses to centrifugation and off-vertical axis rotation and obtained close agreement with experimental findings. This demonstrates how Bayesian inference allows to make a quantitative link between sensor noise and ambiguities, statistics of head movement, and the perception of self-motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Angelaki DE, Shaikh AG, Green AM, Dickman JD (2004) Neurons compute internal models of the physical laws of motion. Nature, 430(6999):560–564

    Article  PubMed  CAS  Google Scholar 

  • Benson AJ, Bodin MA (1966) Interaction of linear and angular accelerations on vestibular receptors in man. Aerosp Med 37(2):144–154

    PubMed  CAS  Google Scholar 

  • Borah J, Young LR, Curry RE (1988) Optimal estimator model for human spatial orientation. Ann NY Acad Sci 545:51–73

    Article  PubMed  CAS  Google Scholar 

  • Bos JE, Bles W (2002) Theoretical considerations on canal-otolith interaction and an observer model. Biol Cybern 86(3):191–207

    Article  PubMed  Google Scholar 

  • Bos JE, Bles W, de Graaf B (2002) Eye movements to yaw, pitch, and roll about vertical and horizontal axes: adaptation and motion sickness. Aviat Space Environ Med 73(5):436–444

    PubMed  CAS  Google Scholar 

  • Correia MJ, Guedry FE (1966) Modification of vestibular responses as a function of rate of rotation about an earth-horizontal axis. Acta Otolaryngol 62(4):297–308

    PubMed  CAS  Google Scholar 

  • Curthoys IS, Haslwanter T, Black RA, Burgess AM, Halmagyi GM, Topple AN, Todd MJ (1998) Off-center yaw rotation: effect of naso-occipital linear acceleration on the nystagmus response of normal human subjects and patients after unilateral vestibular loss. Exp Brain Res 123(4):425–438

    Article  PubMed  CAS  Google Scholar 

  • Deneve S, Latham PE, Pouget A (2001) Efficient computation and cue integration with noisy population codes. Nat Neurosci 4(8):826–831

    Article  PubMed  CAS  Google Scholar 

  • Denise P, Darlot C, Droulez J, Cohen B, Berthoz A (1988) Motion perceptions induced by off-vertical axis rotation (ovar) at small angles of tilt. Exp Brain Res 73(1):106–114

    Article  PubMed  CAS  Google Scholar 

  • Droulez J, Darlot C (1989) The geometric and dynamic implications of the coherence constraints in three-dimensional sensorimotor interactions. In: Jeannerod M. (ed) Attention and Performance XIII. New York, Erlbaum, pp 495–526

    Google Scholar 

  • Droulez J, Cornilleau Perez V (1993) Application of the coherence scheme to the multisensory fusion problem. In: Jeannerod M (ed) Multisensory control of movement. Oxford University Press, Oxford, pp 485–501

    Google Scholar 

  • Ernst MO and Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870):429–433

    Article  PubMed  CAS  Google Scholar 

  • Glasauer S, Merfeld DM (1997) Modeling three dimensional vestibular responses during complex motion stimulations. In: Three-dimensional kinematics of eye, head and limb movements, Harwood Switzerland, pp 387–389

  • Glasauer S (1992) Human spatial orientation during centrifuge experiments : non-linear interaction of semicircular canals and otoliths. In: Jerabek J Krejcova H (ed) Proceedings of the XVIIth Barany Society Meeting, pp 48–52

  • Graybiel A and Clark B (1965) Validity of the oculogravic illusion as an indicator of otolith function. Aerospace Med 36: 1173–1181

    Google Scholar 

  • Guedry FE (1965) Orientation of the rotation-axis relative to gravity: its influence on nystagmus and the sensation of rotation. Acta Otolaryngol 60:30–48

    PubMed  Google Scholar 

  • Guedry FE (1974) Psychophysics of vestibular sensation. In: Kornhuber H.H (ed) Handbook of sensory physiology, Chap. 1. Springer, Berlin, pp 3–154

    Google Scholar 

  • Henn V, Cohen B, Young LR (1980) Visual-vestibular interaction in motion perception and the generation of nystagmus. Neurosci Res Program Bull 18(4):457–651

    PubMed  CAS  Google Scholar 

  • Hillis JM, Ernst MO, Banks MS, Landy MS (2002) Combining sensory information: Mandatory fusion within, but not between, senses. Science 298:1627–1630

    Article  PubMed  CAS  Google Scholar 

  • Hosman RJ, van der Vaart JC (1978) Vestibular models and thresehomds of motion perception. results of tests in a flight simulator. Report

  • Klam F, Graf W (2003) Vestibular response kinematics in posterior parietal cortex neurons of macaque monkeys. Eur J Neurosci 18(4):995–1010

    Article  PubMed  Google Scholar 

  • Kording KP, Wolpert DM (2004) Bayesian integration in sensorimotor learning. Nature 427(6971):244–247

    Article  PubMed  Google Scholar 

  • Lackner JR, Graybiel A (1978) Postural illusions experienced during z-axis recumbent rotation and their dependence upon somatosensory stimulation of the body surface. Aviat Space Environ Med 49(3):484–488

    PubMed  CAS  Google Scholar 

  • Lee TS and Mumford D (2003) Hierarchical bayesian inference in the visual cortex. J Opt Soc Am A Opt Image Sci Vis 20(7):1434–1448

    PubMed  Google Scholar 

  • Maskell S, Gordon N (2002) A tutorial on particle filters for on-line nonlinear/non-gaussian bayesian tracking. IEEE Trans Signal Process 50(2):174–188

    Article  Google Scholar 

  • Mayne R (1974) A system concept of the vestibular organs. In: Kornhuber H.H (ed) Handbook of Sensory Physiology, vol VI. Vestibular system Part 2: psychophysics, applied aspects and general interpretations. Springer, Berlin Heidelberg New York, pp 493–580

    Google Scholar 

  • Merfeld DM, Zupan LH, Gifford CA (2001) Neural processing of gravito-inertial cues in humans. ii. influence of the semicircular canals during eccentric rotation. J Neurophysiol 85(4):1648–1660

    PubMed  CAS  Google Scholar 

  • Merfeld DM, Park S, Gianna C-Poulin, Black FO, Wood S (2005) Vestibular perception and action employ qualitatively different mechanisms. I. frequency response of vor and perceptual responses during translation and tilt. J Neurophysiol 94(1):186–198

    Article  PubMed  Google Scholar 

  • Merfeld DM, Park S, Gianna Poulin C, Black FO, Wood S (2005) Vestibular perception and action employ qualitatively different mechanisms. ii. vor and perceptual responses during combined tilt and translation. J Neurophysiol 94(1):199–205

    Article  PubMed  Google Scholar 

  • Merfeld DM (1995) Modeling the vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt. Exp Brain Res 106(1):123–134

    PubMed  CAS  Google Scholar 

  • Mittelstaedt H, Glasauer S, Gralla G, Mittelstaedt ML (1989) How to explain a constant subjective vertical at constant high speed rotation about an earth-horizontal axis. Acta Otolaryngol Suppl 468:295–299

    PubMed  CAS  Google Scholar 

  • Oman CM (1982) A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Otolaryngol Suppl 392:1–44

    PubMed  CAS  Google Scholar 

  • Rao RP (2004) Bayesian computation in recurrent neural circuits. Neural Comput 16(1):1–38

    Article  PubMed  Google Scholar 

  • Raphan T, Cohen B (2002) The vestibulo-ocular reflex in three dimensions. Exp Brain Res 145(1):1–27

    Article  PubMed  Google Scholar 

  • Raphan T, Cohen B, Matsuo V (1977) A velocity-storage mechanism responsible for optokinetic nystagmus (okn), optokinetic after-nystagmus (okan) and vestibular nystagmus. In: Control of gaze by brainsteam neurons, Elsevier, Amsterdam pp 37–47

  • Reymond G, Droulez J, Kemeny A (2002) Visuovestibular perception of self-motion modeled as a dynamic optimization process. Biol Cybern 87(4):301–314

    Article  PubMed  Google Scholar 

  • Robinson DA (1977) Vestibular and optokinetic symbiosis: an example of explaining by modelling. In: Control of gaze by brainsteam neurons, Elsevier, Amsterdam pp 49–58

  • van der Kooij H, Jacobs R, Koopman B, Grootenboer H (1999) A multisensory integration model of human stance control. Biol Cybern 80(5):299–308

    Article  PubMed  Google Scholar 

  • van der Kooij H, Jacobs R, Koopman B, van der Helm F (2001) An adaptive model of sensory integration in a dynamic environment applied to human stance control. Biol Cybern 84(2): 103–115

    Article  PubMed  Google Scholar 

  • Weiss Y, Simoncelli EP, Adelson EH (2002) Motion illusions as optimal percepts. Nat Neurosci 5(6):598–604

    Article  PubMed  CAS  Google Scholar 

  • Yakushin SB, Raphan T, Suzuki J, Arai Y, Cohen B (1998) Dynamics and kinematics of the angular vestibulo-ocular reflex in monkey: effects of canal plugging. J Neurophysiol 80(6): 3077–3099

    PubMed  CAS  Google Scholar 

  • Zemel RS, Dayan P, Pouget A (1998) Probabilistic interpretation of population codes. Neural Comput 10(2):403–430

    Article  PubMed  CAS  Google Scholar 

  • Zupan LH, Merfeld DM, Darlot C (2002) Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biological Cybernetics 86(3):209–230

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Laurens.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00422-007-0141-9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurens, J., Droulez, J. Bayesian processing of vestibular information. Biol Cybern 96, 389–404 (2007). https://doi.org/10.1007/s00422-006-0133-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0133-1

Keywords

Navigation