Skip to main content
Log in

Moving into shape: cell migration during the development and histogenesis of the cerebellum

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The enormous expansion the vertebrate nervous system goes through from its first anlage to its adult shape and organization goes along with extensive rearrangements of its constituent cells and typical cellular migrations, often over long distances, and by convoluted pathways. Here, I try to summarize how the cells that form the cerebellum move and migrate during normal cerebellar histogenesis. The cerebellum is made up of a limited set of clearly distinguishable classes of cells, some of which are also readily accessible by genetic tools. Its structure and development have been the focus of studies dating back to at least Ramon y Cajal which have yielded fundamental insights into basic mechanisms of the development of the nervous. During cerebellar histogenesis, several distinct and well-discernable modes of migration may be recognized, some of which have been studied in considerable morphological and molecular detail. Still, often grace to the detail known, a wealth of open questions remains, and the cerebellar anlage remains a highly accessible and promising paradigm for those interested in nervous system development and cell migration in general. I also point out some of the issues that may warrant consideration when results from technically distinct studies are compared and integrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(modified from Lugaro 1894). (j) Pax2-positive precursors of cerebellar inhibitory interneurons in a parasagittal section through the cerebellar anlage of a 13.5-day-old mouse embryo. (k) Clustered Olig2-positive cells next to the NTZ in the cerebellar anlage of a 13.5-day-old mouse embryo. This section shows a somewhat more lateral region of the cerebellar anlage than the other E13.5 sections shown. Bars (in a; for panels a–c, j,k) ~ 500 µm. Bar in panel e (for d, e) ~ 500 µm. Bar in panel f (for f–h) ~ 200 µm. All images except panel i were obtained from the Allen Brain Atlas (Lein et al. 2007)

Similar content being viewed by others

Notes

  1. In this manuscript, I refer to both genes and their encoded proteins in regular print, and unless otherwise mentioned or indicated by the context, both the encoding gene and its protein product are meant. The actual genetic nomenclature is used, and historical or common synonyms are given when this is thought to facilitate access to the original literature. Unless specifically mentioned, data refer to mice.

References

  • Abbah J, Juliano SL (2013) Altered migratory behavior of interneurons in a model of cortical dysplasia: the influence of elevated GABAA activity. Cereb Cortex 24:2297–2308

    Article  PubMed  PubMed Central  Google Scholar 

  • Ackerman SL, Kozak LP, Przyborski SA, Rund LA, Boyer BB, Knowles BB (1997) The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386:838–842

    Article  PubMed  CAS  Google Scholar 

  • Adams NC, Tomoda T, Cooper M, Dietz G, Hatten ME (2002) Mice that lack astrotactin have slowed neuronal migration. Development 129:965–972

    PubMed  CAS  Google Scholar 

  • Alcantara S, Ruiz M, De Castro F, Soriano E, Sotelo C (2000) Netrin 1 acts as an attractive or as a repulsive cue for distinct migrating neurons during the development of the cerebellar system. Development 127:1359–1372

    PubMed  CAS  Google Scholar 

  • Alcaraz WA, Gold DA, Raponi E, Gent PM, Concepcion D, Hamilton BA (2006) Zfp423 controls proliferation and differentiation of neural precursors in cerebellar vermis formation. Proc Natl Acad Sci USA 103:19424–19429

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. III. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J Comp Neurol 136:269–294

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1972) Postnatal development of the cerebellar cortex in the rat. III. Maturation of the components of the granular layer. J Comp Neurol 145:465–514

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1985) Embryonic development of the rat cerebellum. III. Regional differences in the time of origin, migration, and setting of Purkinje cells. J Comp Neurol 231:42–65

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1997) Development of the cerebellar system in relation to its evolution, structure, and functions. CRC Press, Boca Raton

    Google Scholar 

  • Alvarez Otero R, Sotelo C, Alvarado-Mallart RM (1993) Chick/quail chimeras with partial cerebellar grafts: an analysis of the origin and migration of cerebellar cells. J Comp Neurol 333:597–615

    Article  PubMed  CAS  Google Scholar 

  • Audouard E, Schakman O, Ginion A, Bertrand L, Gailly P, Clotman F (2013) The Onecut transcription factor HNF-6 contributes to proper reorganization of Purkinje cells during postnatal cerebellum development. Mol Cell Neurosci 56:159–168

    Article  PubMed  CAS  Google Scholar 

  • Basco E, Hajos F, Fulop Z (1977) Proliferation of Bergmann-glia in the developing rat cerebellum. Anat Embryol (Berl) 151:219–222

    Article  CAS  Google Scholar 

  • Bell CC, Han V, Sawtell NB (2008) Cerebellum-Like structures and their implications for cerebellar function. Annu Rev Neurosci 31:1–24

    Article  PubMed  CAS  Google Scholar 

  • Bellamy TC (2006) Interactions between Purkinje neurones and Bergmann glia. Cerebellum 5:116–126

    Article  PubMed  Google Scholar 

  • Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordatze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390:169–172

    Article  PubMed  CAS  Google Scholar 

  • Benhamou S (2004) How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension? J Theor Biol 229:209–220

    Article  PubMed  Google Scholar 

  • Benon A, Ya C, Martin L, Watrin C, Chounlamountri N, Jaaoini I, Honnorat J, Pellier-Monnin V, Noraz N (2017) The Syk kinases orchestrate cerebellar granule cell tangential migration. Neuroscience 360:230–239

    Article  PubMed  CAS  Google Scholar 

  • Blockus H, Chedotal A (2016) Slit-Robo signaling. Development 143:3037–3044

    Article  PubMed  CAS  Google Scholar 

  • Bock HH, May P (2016) Canonical and non-canonical reelin signaling. Front Cell Neurosci 10:166

    PubMed  PubMed Central  Google Scholar 

  • Bolteus AJ, Bordey A (2004) GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J Neurosci 24:7623–7631

    Article  PubMed  CAS  Google Scholar 

  • Borghesani PR, Peyrin JM, Klein R, Rubin J, Carter AR, Schwartz PM, Luster A, Corfas G, Segal RA (2002) BDNF stimulates migration of cerebellar granule cells. Development 129:1435–1442

    PubMed  CAS  Google Scholar 

  • Buffo A, Rossi F (2013) Origin, lineage and function of cerebellar glia. Prog Neurobiol 109:42–63

    Article  PubMed  Google Scholar 

  • Burlakov VM, Taylor R, Koerner J, Emptage N (2010) Analysis of microscopic parameters of single-particle trajectories in neurons. Biophys J 99:1368–1376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calenge C, Dray S, Royer-Carenzi M (2009) The concept of animals’ trajectories from a data analysis perspective. Ecol Inform 4:34–41

    Article  Google Scholar 

  • Cameron DB, Galas L, Jiang Y, Raoult E, Vaudry D, Komuro H (2007) Cerebellar cortical-layer-specific control of neuronal migration by pituitary adenylate cyclase-activating polypeptide. Neuroscience 146:697–712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cameron DB, Kasai K, Jiang Y, Hu T, Saeki Y, Komuro H (2009) Four distinct phases of basket/stellate cell migration after entering their final destination (the molecular layer) in the developing cerebellum. Dev Biol 332:309–324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casoni F, Croci L, Bosone C, D’Ambrosio R, Badaloni A, Gaudesi D, Barili V, Sarna JR, Tessarollo L, Cremona O, Hawkes R, Warming S, Consalez GG (2017) Zfp423, A Joubert syndrome gene, is a domain-specific regulator of cell cycle progression, DNA damage response and Purkinje cell development In the cerebellar primordium. Development 144:3686–3697

    Article  PubMed  CAS  Google Scholar 

  • Caviness JrVS, Rakic P (1978) Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci 1:297–326

    Article  PubMed  Google Scholar 

  • Cheng L, Arata A, Mizuguchi R, Qian Y, Karunaratne A, Gray PA, Arata S, Shirasawa S, Bouchard M, Luo P, Chen CL, Busslinger M, Goulding M, Onimaru H, Ma Q (2004) Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates. Nat Neurosci 7:510–517

    Article  PubMed  CAS  Google Scholar 

  • Cheng PL, Song AH, Wong YH, Wang S, Zhang X, Poo MM (2011) Self-amplifying autocrine actions of BDNF in axon development. Proc Natl Acad Sci USA 108:18430–18435

    Article  PubMed  Google Scholar 

  • Chizhikov VV, Lindgren AG, Currle DS, Rose MF, Monuki ES, Millen KJ (2006) The roof plate regulates cerebellar cell-type specification and proliferation. Development 133:2793–2804

    Article  PubMed  CAS  Google Scholar 

  • Cho JH, Tsai MJ (2006) Preferential posterior cerebellum defect in BETA2/NeuroD1 knockout mice is the result of differential expression of BETA2/NeuroD1 along anterior-posterior axis. Dev Biol 290:125–138

    Article  PubMed  CAS  Google Scholar 

  • Cochet-Escartin O, Locke TT, Shi WH, Steele RE, Collins ES (2017) Physical Mechanisms Driving Cell Sorting in Hydra. Biophys J 113:2827–2841

    Article  PubMed  CAS  Google Scholar 

  • Codling EA, Hill NA (2005) Sampling rate effects on measurements of correlated and biased random walks. J Theor Biol 233:573–588

    Article  PubMed  CAS  Google Scholar 

  • Consalez GG, Hawkes R (2013) The compartmental restriction of cerebellar interneurons. Front Neural Circuit 6:123

    Article  Google Scholar 

  • Cuzon VC, Yeh PW, Cheng Q, Yeh HH (2006) Ambient GABA promotes cortical entry of tangentially migrating cells derived from the medial ganglionic eminence. Cereb Cortex 16:1377–1388

    Article  PubMed  Google Scholar 

  • D’Arcangelo G, Miao GG, Chen S-C, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723

    Article  PubMed  Google Scholar 

  • Dahmane N, Ruiz i Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126:3089–3100

    PubMed  Google Scholar 

  • de Luca A, Cerrato V, Fuca E, Parmigiani E, Buffo A, Leto K (2016) Sonic hedgehog patterning during cerebellar development. Cell Mol Life Sci 73:291–303

    Article  PubMed  CAS  Google Scholar 

  • Di Giovannantonio LG, Di SM, Omodei D, Prakash N, Wurst W, Pierani A, Acampora D, Simeone A (2014) Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. Development 141:377–388

    Article  PubMed  CAS  Google Scholar 

  • Dickinson RB, Tranquillo RT (1993) Optimal estimation of cell movement indices from the statistical analysis of cell tracking data. AICHE J 39:1995–2010

    Article  Google Scholar 

  • Divya TS, Lalitha S, Parvathy S, Subashini C, Sanalkumar R, Dhanesh SB, Rasheed VA, Divya MS, Tole S, James J (2016) Regulation of Tlx3 by Pax6 is required for the restricted expression of Chrnalpha3 in Cerebellar Granule Neuron progenitors during development. Sci Rep 6:30337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunderdale G, Ebbens S, Fairclough P, Howse J (2012) Importance of particle tracking and calculating the mean-squared displacement in distinguishing nanopropulsion from other processes. Langmuir 28:10997–11006

    Article  PubMed  CAS  Google Scholar 

  • Eiraku M, Tohgo A, Ono K, Kaneko M, Fujishima K, Hirano T, Kengaku M (2005) DNER acts as a neuron-specific Notch ligand during Bergmann glial development. Nat Neurosci 8:873–880

    Article  PubMed  CAS  Google Scholar 

  • Englund C, Kowalczyk T, Daza RA, Dagan A, Lau C, Rose MF, Hevner RF (2006) Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 26:9184–9195

    Article  PubMed  CAS  Google Scholar 

  • Estep JA, Wong W, Wong YE, Loui BM, Riccomagno MM (2018) The RacGAP beta-Chimaerin is essential for cerebellar granule cell migration. Sci Rep 8:680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farago AF, Awatramani RB, Dymecki SM (2006) Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50:205–218

    Article  PubMed  CAS  Google Scholar 

  • Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA 93:10887–10890

    Article  PubMed  CAS  Google Scholar 

  • Fink AJ, Englund C, Daza RA, Pham D, Lau C, Nivison M, Kowalczyk T, Hevner RF (2006) Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci 26:3066–3076

    Article  PubMed  CAS  Google Scholar 

  • Fisher M (1984) Neuronal influence on glial enzyme expression: evidence from mutant mouse cerebella. Proc Natl Acad Sci USA 81:4414–4418

    Article  PubMed  CAS  Google Scholar 

  • Fleming JT, He W, Hao C, Ketova T, Pan FC, Wright CC, Litingtung Y, Chiang C (2013) The purkinje neuron acts as a central regulator of spatially and functionally distinct cerebellar precursors. Dev Cell 27:278–292

    Article  PubMed  CAS  Google Scholar 

  • Foty RA, Steinberg MS (2005) The differential adhesion hypothesis: a direct evaluation. Dev Biol 278:255–263

    Article  PubMed  CAS  Google Scholar 

  • Frantz GD, Weimann JM, Levin ME, McConnell SK (1994) Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J Neurosci 14:5725–5740

    Article  PubMed  CAS  Google Scholar 

  • Frantz GD, Wuenschell CW, Messer A, Tobin AJ (1996) Presence of calbindin D28k and GAD67 mRNAs in both orthotopic and ectopic Purkinje cells of staggerer mice suggest that staggerer acts after the onset of cytodifferentiation. J Neurosci Res 44:255–262

    Article  PubMed  CAS  Google Scholar 

  • Fredette BJ, Mugnaini E (1991) The GABAergic cerebello-olivary projection in the rat. Anat Embryol (Berl) 184:225–243

    Article  CAS  Google Scholar 

  • Friedel RH, Kerjan G, Rayburn H, Schuller U, Sotelo C, Tessier-Lavigne M, Chedotal A (2007) Plexin-B2 controls the development of cerebellar granule cells. J Neurosci 27:3921–3932

    Article  PubMed  CAS  Google Scholar 

  • Fujita S (1967) Quantitative analysis of cell proliferation and differentiation in the cortex of the postnatal mouse cerebellum. J Cell Biol 32:277–287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujita S (1969) Autoradiographic studies on histogenesis of the cerebellar cortex. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. American Medical Association, Chicago, pp 743–747

    Google Scholar 

  • Fujiyama T, Yamada M, Terao M, Terashima T, Hioki H, Inoue YU, Inoue T, Masuyama N, Obata K, Yanagawa Y, Kawaguchi Y, Nabeshima Y, Hoshino M (2009) Inhibitory and excitatory subtypes of cochlear nucleus neurons are defined by distinct bHLH transcription factors, Ptf1a and Atoh1. Development 136:2049–2058

    Article  PubMed  CAS  Google Scholar 

  • Gilthorpe JD, Papantoniou EK, Chedotal A, Lumsden A, Wingate RJ (2002) The migration of cerebellar rhombic lip derivatives. Development 129:4719–4728

    PubMed  CAS  Google Scholar 

  • Glassmann A, Molly S, Surchev L, Nazwar TA, Holst M, Hartmann W, Baader SL, Oberdick J, Pietsch T, Schilling K (2007) Developmental expression and differentiation-related neuron-specific splicing of metastasis suppressor 1 (Mtss1) in normal and transformed cerebellar cells. BMC Dev Biol 7:111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gliem M, Weisheit G, Mertz KD, Endl E, Oberdick J, Schilling K (2006) Expression of classical cadherins in the cerebellar anlage: quantitative and functional aspects. Mol Cell Neurosci 33:447–458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldowitz D, Cushing RC, Laywell E, D’Arcangelo G, Sheldon M, Sweet HO, Davisson M, Steindler D, Curran T (1997) Cerebellar disorganization characteristic of reeler in scrambler mutant mice despite presence of reelin. J Neurosci 17:8767–8777

    Article  PubMed  CAS  Google Scholar 

  • Goldowitz D, Hamre KM, Przyborski SA, Ackerman SL (2000) Granule cells and cerebellar boundaries: analysis of Unc5h3 mutant chimeras. J Neurosci 20:4129–4137

    Article  PubMed  CAS  Google Scholar 

  • Green MJ, Myat AM, Emmenegger BA, Wechsler-Reya RJ, Wilson LJ, Wingate RJ (2014) Independently specified Atoh1 domains define novel developmental compartments in rhombomere 1. Development 141:389–398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greene M, Lai Y, Pajcini K, Bailis W, Pear WS, Lancaster E (2016) Delta/Notch-Like EGF-Related Receptor (DNER) Is Not a Notch Ligand. PLoS ONE 11:e0161157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grimaldi P, Parras C, Guillemot F, Rossi F, Wassef M (2009) Origins and control of the differentiation of inhibitory interneurons and glia in the cerebellum. Dev Biol 328:422–433

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Zhao C, Huang M, Huang T, Fan M, Xie Z, Chen Y, Zhao X, Xia G, Geng J, Cheng L (2012) Tlx1/3 and Ptf1a control the expression of distinct sets of transmitter and peptide receptor genes in the developing dorsal spinal cord. J Neurosci 32:8509–8520

    Article  PubMed  CAS  Google Scholar 

  • Hager G, Dodt H-U, Ziegelgänsberger W, Liesi P (1995) Novel forms of neuronal migration in the rat cerebellum. J Neurosci Res 40:207–219

    Article  PubMed  CAS  Google Scholar 

  • Hagihara K, Zhang EE, Ke YH, Liu G, Liu JJ, Rao Y, Feng GS (2009) Shp2 acts downstream of SDF-1 [alpha]/CXCR4 in guiding granule cell migration during cerebellar development. Dev Biol 334:276–284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haines BP, Wheldon LM, Summerbell D, Heath JK, Rigby PW (2006) Regulated expression of FLRT genes implies a functional role in the regulation of FGF signalling during mouse development. Dev Biol 297:14–25

    Article  PubMed  CAS  Google Scholar 

  • Haldipur P, Sivaprakasam I, Periasamy V, Govindan S, Mani S (2015) Asymmetric cell division of granule neuron progenitors in the external granule layer of the mouse cerebellum. Biol Open 4:865–872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hallonet MER, Le Douarin NM (1993) Tracing neuroepithelial cells of the mesencephalic and metencephalic alar plates during cerebellar ontogeny in quail-chick chimaeras. Eur J Neurosci 5:1145–1155

    Article  PubMed  CAS  Google Scholar 

  • Hallonet MER, Teillet M-A, Le Douarin NM (1990) A new approach to the development of the cerebellum provided by the quail-chick marker system. Development 108:19–31

    PubMed  CAS  Google Scholar 

  • Hamre KM, Goldowitz D (1996) Analysis of gene action in the meander tail mouse: examination of cerebellar phenotype and mitotic activity of granule cell neuroblasts. J Comp Neurol 368:304–315

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto R, Hori K, Owa T, Miyashita S, Dewa K, Masuyama N, Sakai K, Hayase Y, Seto Y, Inoue YU, Inoue T, Ichinohe N, Kawaguchi Y, Akiyama H, Koizumi S, Hoshino M (2016) Origins of oligodendrocytes in the cerebellum, whose development is controlled by the transcription factor, Sox9. Mech Dev 140:25–40

    Article  PubMed  CAS  Google Scholar 

  • Hatten ME, Mason CA (1990) Mechanisms of glial-guided neuronal migration in vitro and in vivo. Experientia 46:907–916

    Article  PubMed  CAS  Google Scholar 

  • Hausmann B, Sievers J (1985) Cerebellar external granule cells are attached to the basal lamina from the onset of migration up to the end of their proliferative activity. J Comp Neurol 241:50–62

    Article  PubMed  CAS  Google Scholar 

  • Hecker D, Kappler J, Glassmann A, Schilling K, Alt W (2008) Image analysis of time-lapse movies-A precision control guided approach to correct motion artefacts. J Neurosci Methods 172:67–73

    Article  PubMed  Google Scholar 

  • Herrup K, Kuemerle B (1997) The compartmentalization of the cerebellum. Annu Rev Neurosci 20:61–90

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka Y, Komine O, Nagaoka M, Bai N, Hozumi K, Tanaka K (2013) Delta-like 1 regulates Bergmann glial monolayer formation during cerebellar development. Mol Brain 6:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoshiba Y, Toda T, Ebisu H, Wakimoto M, Yanagi S, Kawasaki H (2016) Sox11 balances dendritic morphogenesis with neuronal migration in the developing cerebral cortex. J Neurosci 36:5775–5784

    Article  PubMed  CAS  Google Scholar 

  • Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M, Watanabe M, Bito H, Terashima T, Wright CV, Kawaguchi Y, Nakao K, Nabeshima Y (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47:201–213

    Article  PubMed  CAS  Google Scholar 

  • Huang M, Huang T, Xiang Y, Xie Z, Chen Y, Yan R, Xu J, Cheng L (2008) Ptf1a, Lbx1 and Pax2 coordinate glycinergic and peptidergic transmitter phenotypes in dorsal spinal inhibitory neurons. Dev Biol 322:394–405

    Article  PubMed  CAS  Google Scholar 

  • Jahan I, Pan N, Fritzsch B (2015) Opportunities and limits of the one gene approach: the ability of Atoh1 to differentiate and maintain hair cells depends on the molecular context. Front Cell Neurosci 9:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang J, Zhang ZH, Yuan XB, Poo MM (2015) Spatiotemporal dynamics of traction forces show three contraction centers in migratory neurons. J Cell Biol 209:759–774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin K, Jiang H, Xiao D, Zou M, Zhu J, Xiang M (2015) Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis. Mol Brain 8:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kareiva PM, Shigesada N (1983) Analyzing insect movement as a correlated random walk. Oecologia 56:234–238

    Article  PubMed  CAS  Google Scholar 

  • Kawaji K, Umeshima H, Eiraku M, Hirano T, Kengaku M (2004) Dual phases of migration of cerebellar granule cells guided by axonal and dendritic leading processes. Mol Cell Neurosci 25:228–240

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki T, Ito K, Hirata T (2006) Netrin 1 regulates ventral tangential migration of guidepost neurons in the lateral olfactory tract. Development 133:845–853

    Article  PubMed  CAS  Google Scholar 

  • Kita Y, Kawakami K, Takahashi Y, Murakami F (2013) Development of cerebellar neurons and glias revealed by in utero electroporation: Golgi-like labeling of cerebellar neurons and glias. PLoS ONE 8:e70091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klisch TJ, Xi Y, Flora A, Wang L, Li W, Zoghbi HY (2011) In vivo Atoh1 targetome reveals how a proneural transcription factor regulates cerebellar development. Proc Natl Acad Sci USA 108:3288–3293

    Article  PubMed  PubMed Central  Google Scholar 

  • Koirala S, Corfas G (2010) Identification of novel glial genes by single-cell transcriptional profiling of Bergmann glial cells from mouse cerebellum. PLoS ONE 5:e9198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koirala S, Jin Z, Piao X, Corfas G (2009) GPR56-regulated granule cell adhesion is essential for rostral cerebellar development. J Neurosci 29:7439–7449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kokubo M, Nishio M, Ribar TJ, Anderson KA, West AE, Means AR (2009) BDNF-mediated cerebellar granule cell development is impaired in mice null for CaMKK2 or CaMKIV. J Neurosci 29:8901–8913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Komine O, Nagaoka M, Watase K, Gutmann DH, Tanigaki K, Honjo T, Radtke F, Saito T, Chiba S, Tanaka K (2007) The monolayer formation of Bergmann glial cells is regulated by Notch/RBP-J signaling. Dev Biol 311:238–250

    Article  PubMed  CAS  Google Scholar 

  • Komuro H, Rakic P (1992) Selective role of calcium channels in neuronal migration. Science 257:806–809

    Article  PubMed  CAS  Google Scholar 

  • Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260:95–97

    Article  PubMed  CAS  Google Scholar 

  • Komuro H, Rakic P (1995) Dynamics of granule cell migration: a confocal microscopy study in acute cerebellar slice preparations. J Neurosci 15:1110–1120

    Article  PubMed  CAS  Google Scholar 

  • Komuro H, Rakic P (1996) Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. Neuron 17:275–285

    Article  PubMed  CAS  Google Scholar 

  • Komuro H, Rakic P (1998a) Distinct modes of neuronal migration in different domains of developing cerebellar cortex. J Neurosci 18:1478–1490

    Article  PubMed  CAS  Google Scholar 

  • Komuro H, Rakic P (1998b) Orchestration of neuronal migration by activity of ion channels, neurotransmitter receptors, and intracellular Ca2+ fluctuations. J Neurobiol 37:110–130

    Article  PubMed  CAS  Google Scholar 

  • Komuro H, Yacubova E (2003) Recent advances in cerebellar granule cell migration. Cell Mol Life Sci 60:1084–1098

    Article  PubMed  CAS  Google Scholar 

  • Komuro H, Yacubova E, Rakic P (2001) Mode and tempo of tangential cell migration in the cerebellar external granule cell layer. J Neurosci 21:527–540

    Article  PubMed  CAS  Google Scholar 

  • Komuro Y, Galas L, Lebon A, Raoult E, Fahrion JK, Tilot A, Kumada T, Ohno N, Vaudry D, Komuro H (2015) The role of calcium and cyclic nucleotide signaling in cerebellar granule cell migration under normal and pathological conditions. Dev Neurobiol 75:369–387

    Article  PubMed  CAS  Google Scholar 

  • Kuhar SG, Feng L, Vidan S, Ross ME, Hatten ME, Heintz N (1993) Changing patterns of gene expression define four stages of cerebellar granule neuron differentiation. Development 117:97–104

    PubMed  CAS  Google Scholar 

  • Kumada T, Jiang Y, Kawanami A, Cameron DB, Komuro H (2009) Autonomous turning of cerebellar granule cells in vitro by intrinsic programs. Dev Biol 326:237–249

    Article  PubMed  CAS  Google Scholar 

  • Kuo G, Arnaud L, Kronstad-O’Brien P, Cooper JA (2005) Absence of Fyn and Src causes a reeler-like phenotype. J Neurosci 25:8578–8586

    Article  PubMed  CAS  Google Scholar 

  • Lane PW, Bronson RT, Spencer CA (1992) Rostral cerebellar malformation,(rcm): a new recessive mutation on chromosome 3 of the mouse. J Hered 83:315–318

    Article  PubMed  CAS  Google Scholar 

  • Lee GH, D’Arcangelo G (2016) New Insights into Reelin-Mediated Signaling Pathways. Front Cell Neurosci 10:122

    PubMed  PubMed Central  Google Scholar 

  • Legue E, Gottshall JL, Jaumouille E, Rosello-Diez A, Shi W, Barraza LH, Washington S, Grant RL, Joyner AL (2016) Differential timing of granule cell production during cerebellum development underlies generation of the foliation pattern. Neural Dev 11:17–0072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et.al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

    Article  PubMed  CAS  Google Scholar 

  • Leto K, Carletti B, Williams IM, Magrassi L, Rossi F (2006) Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J Neurosci 26:11682–11694

    Article  PubMed  CAS  Google Scholar 

  • Leto K, Bartolini A, Yanagawa Y, Obata K, Magrassi L, Schilling K, Rossi F (2009) Laminar fate and phenotype specification of cerebellar GABAergic interneurons. J Neurosci 29:7079–7091

    Article  PubMed  CAS  Google Scholar 

  • Leto K, Bartolini A, Rossi F (2010) The prospective white matter: an atypical neurogenic niche in the developing cerebellum. Arch Ital Biol 148:137–146

    PubMed  CAS  Google Scholar 

  • Leto K, Bartolini A, Di GA, Imperiale D, de Luca A, Parmigiani E, Filipkowski RK, Kaczmarek L, Rossi F (2011) Modulation of cell-cycle dynamics is required to regulate the number of cerebellar GABAergic interneurons and their rhythm of maturation. Development 138:3463–3472

    Article  PubMed  CAS  Google Scholar 

  • Leto K, Rolando C, Rossi F (2012) The genesis of cerebellar GABAergic neurons: fate potential and specification mechanisms. Front Neuroanat 6:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Li K, Leung AW, Guo Q, Yang W, Li JY (2014) Shp2-dependent ERK signaling is essential for induction of Bergmann glia and foliation of the cerebellum. J Neurosci 34:922–931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liebl DJ, Morris CJ, Henkemeyer M, Parada LF (2003) mRNA expression of ephrins and Eph receptor tyrosine kinases in the neonatal and adult mouse central nervous system. J Neurosci Res 71:7–22

    Article  PubMed  CAS  Google Scholar 

  • Lu Q, Sun EE, Klein RS, Flanagan JG (2001) Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell 105:69–79

    Article  PubMed  CAS  Google Scholar 

  • Lugaro E (1894) Ueber die Histogenese der Körner der Kleinhirnrinde. Anat Anz 9:710–713

    Google Scholar 

  • Luhmann HJ, Fukuda A, Kilb W (2015) Control of cortical neuronal migration by glutamate and GABA. Front Cell Neurosci 9:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 95:9448–9453

    Article  PubMed  CAS  Google Scholar 

  • Machold RP, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48:17–24

    Article  PubMed  CAS  Google Scholar 

  • Machold R, Klein C, Fishell G (2011) Genes expressed in Atoh1 neuronal lineages arising from the r1/isthmus rhombic lip. Gene Expr Patterns 11:349–359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maier V, Jolicoeur C, Rayburn H, Takegahara N, Kumanogoh A, Kikutani H, Tessier-Lavigne M, Wurst W, Friedel RH (2011) Semaphorin 4C and 4G are ligands of Plexin-B2 required in cerebellar development. Mol Cell Neurosci 46:419–431

    Article  PubMed  CAS  Google Scholar 

  • Mancini JD, Atchison WD (2007) The NR2B subunit in NMDA receptors is functionally important during cerebellar granule cell migration. Neurosci Lett 429:87–90

    Article  PubMed  CAS  Google Scholar 

  • Maricich SM, Herrup K (1999) Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J Neurobiol 41:281–294

    Article  PubMed  CAS  Google Scholar 

  • Martinez S, Alvarado-Mallart RM (1989) Rostral cerebellum originates from the caudal portion of the so-called ‘Mesencephalic’ vesicle: a study using chick/quail chimeras. Eur J Neurosci 1:549–560

    Article  PubMed  Google Scholar 

  • Maxeiner S, Glassmann A, Kao HT, Schilling K (2013) The molecular basis of the specificity and cross-reactivity of the NeuN epitope of the neuron-specific splicing regulator, Rbfox3. Histochem Cell Biol 141:43–55

    Article  PubMed  CAS  Google Scholar 

  • McAndrew PE, Frostholm A, Evans JE, Zdilar D, Goldowitz D, Chiu IM, Burghes AH, Rotter A (1998) Novel receptor protein tyrosine phosphatase (RPTPrho) and acidic fibroblast growth factor (FGF-1) transcripts delineate a rostrocaudal boundary in the granule cell layer of the murine cerebellar cortex. J Comp Neurol 391:444–455

    Article  PubMed  CAS  Google Scholar 

  • Mecklenburg N, Garcia-Lopez R, Puelles E, Sotelo C, Martinez S (2011) Cerebellar oligodendroglial cells have a mesencephalic origin. Glia 59:1946–1957

    Article  PubMed  Google Scholar 

  • Mecklenburg N, Martinez-Lopez JE, Moreno-Bravo JA, Perez-Balaguer A, Puelles E, Martinez S (2014) Growth and differentiation factor 10 (Gdf10) is involved in Bergmann glial cell development under Shh regulation. Glia 62:1713–1723

    Article  PubMed  Google Scholar 

  • Meier F, Giesert F, Delic S, Faus-Kessler T, Matheus F, Simeone A, Holter SM, Kuhn R, Weisenhorn DM, Wurst W, Prakash N (2014) FGF/FGFR2 signaling regulates the generation and correct positioning of Bergmann glia cells in the developing mouse cerebellum. PLoS ONE 9:e101124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A Math Gen 37:R161

    Article  Google Scholar 

  • Miale IL, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4:277–296

    Article  PubMed  CAS  Google Scholar 

  • Michalet X (2010) Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys Rev E Stat Nonlin Soft Matter Phys 82:041914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller RJ (1992) Voltage-sensitive Ca2+ channels. J Biol Chem 267:1403–1406

    PubMed  CAS  Google Scholar 

  • Millet S, Bloch-Gallego E, Simeone A, Alvarado-Mallart RM (1996) The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development 122:3785–3797

    PubMed  CAS  Google Scholar 

  • Minaki Y, Nakatani T, Mizuhara E, Inoue T, Ono Y (2008) Identification of a novel transcriptional corepressor, Corl2, as a cerebellar Purkinje cell-selective marker. Gene Expr Patterns 8:418–423

    Article  PubMed  CAS  Google Scholar 

  • Miyashita S, Adachi T, Yamashita M, Sota T, Hoshino M (2017) Dynamics of the cell division orientation of granule cell precursors during cerebellar development. Mech Dev 147:1–7

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Nakajima K, Mikoshiba K, Ogawa M (1997) Regulation of Purkinje cell alignment by reelin as revealed with CR-50 antibody. J Neurosci 17:3599–3609

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Maeda T, Lee JE (1999) NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev 13:1647–1652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miyata T, Ono Y, Okamoto M, Masaoka M, Sakakibara A, Kawaguchi A, Hashimoto M, Ogawa M (2010) Migration, early axonogenesis, and Reelin-dependent layer-forming behavior of early/posterior-born Purkinje cells in the developing mouse lateral cerebellum. Neural Dev 5:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Mori T, Tanaka K, Buffo A, Wurst W, Kuhn R, Gotz M (2006) Inducible gene deletion in astroglia and radial glia–a valuable tool for functional and lineage analysis. Glia 54:21–34

    Article  PubMed  Google Scholar 

  • Mugnaini E, Sekerková G, Martina M (2011) The unipolar brush cell: a remarkable neuron finally receiving the deserved attention. Brain Res Rev 66:220–245

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Ueyama T, Ninoyu Y, Sakaguchi H, Choijookhuu N, Hishikawa Y, Kiyonari H, Kohta M, Sakahara M, de CI, Kohmura, Hisa E, Aiba Y, Saito A N (2017) Novel role of Rac-Mid1 signaling in medial cerebellar development. Development 144:1863–1875

    Article  PubMed  CAS  Google Scholar 

  • Nakhai H, Sel S, Favor J, Mendoza-Torres L, Paulsen F, Duncker GI, Schmid RM (2007) Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development 134:1151–1160

    Article  PubMed  CAS  Google Scholar 

  • Napieralski JA, Eisenman LM (1993) Developmental analysis of the external granule cell layer in the meander tail mutant mouse: do cerebellar microneurons have independent progenitors? Dev Dyn 197:244–254

    Article  PubMed  CAS  Google Scholar 

  • Oberdick J, Smeyne RJ, Mann JR, Zackson S, Morgan JI (1990) A promoter that drives transgene expression in cerebellar Purkinje and retinal bipolar neurons. Science 248:223–226

    Article  PubMed  CAS  Google Scholar 

  • Pan N, Jahan I, Lee JE, Fritzsch B (2009) Defects in the cerebella of conditional Neurod1 null mice correlate with effective Tg(Atoh1-cre) recombination and granule cell requirements for Neurod1 for differentiation. Cell Tissue Res 337:407–428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parmigiani E, Leto K, Rolando C, Figueres-Onate M, Lopez-Mascaraque L, Buffo A, Rossi F (2015) Heterogeneity and bipotency of astroglial-like cerebellar progenitors along the interneuron and glial lineages. J Neurosci 35:7388–7402

    Article  PubMed  CAS  Google Scholar 

  • Pascual M, Abasolo I, Mingorance-Le Meur A, Martinez A, Del Rio JA, Wright CV, Real FX, Soriano E (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci USA 104:5193–5198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pederick DT, Richards KL, Piltz SG, Kumar R, Mincheva-Tasheva S, Mandelstam SA, Dale RC, Scheffer IE, Gecz J, Petrou S, Hughes JN, Thomas PQ (2018) Abnormal Cell sorting underlies the unique X-linked inheritance of PCDH19 epilepsy. Neuron 97:59–66

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer PL, Payer B, Reim G, di Magliano MP, Busslinger M (2002) The activation and maintenance of Pax2 expression at the mid-hindbrain boundary is controlled by separate enhancers. Development 129:307–318

    PubMed  CAS  Google Scholar 

  • Pons S, Trejo JL, Martinez-Morales JR, Marti E (2001) Vitronectin regulates Sonic hedgehog activity during cerebellum development through CREB phosphorylation. Development 128:1481–1492

    PubMed  CAS  Google Scholar 

  • Przyborski SA, Knowles BB, Ackerman SL (1998) Embryonic phenotype of Unc5h3 mutant mice suggests chemorepulsion during the formation of the rostral cerebellar boundary. Development 125:41–50

    PubMed  CAS  Google Scholar 

  • Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in maccacus rhesus. J Comp Neurol 141:283–312

    Article  PubMed  CAS  Google Scholar 

  • Ramon y Cajal S (1909) Histologie du système nerveux de l’homme et des vertébrés. II. A. Maloine, Paris

    Google Scholar 

  • Raoult E, Benard M, Komuro H, Lebon A, Vivien D, Fournier A, Vaudry H, Vaudry D, Galas L (2014) Cortical layer-specific effects of PACAP and tPA on interneuron migration during post-natal development of the cerebellum. J Neurochem 130:241–254

    Article  PubMed  CAS  Google Scholar 

  • Reimold AM, Grusby MJ, Kosaras B, Fries JWU, Mori R, Maniwa S, Clauss IM, Collins T, Sidman RL, Glimcher MJ, Glimcher LH (1996) Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice. Nature 379:262–265

    Article  PubMed  CAS  Google Scholar 

  • Renaud J, Chedotal A (2014) Time-lapse analysis of tangential migration in Sema6A and PlexinA2 knockouts. Mol Cell Neurosci 63:49–59

    Article  PubMed  CAS  Google Scholar 

  • Renaud J, Kerjan G, Sumita I, Zagar Y, Georget V, Kim D, Fouquet C, Suda K, Sanbo M, Suto F, Ackerman SL, Mitchell KJ, Fujisawa H, Chedotal A (2008) Plexin-A2 and its ligand, Sema6A, control nucleus-centrosome coupling in migrating granule cells. Nat Neurosci 11:440–449

    Article  PubMed  CAS  Google Scholar 

  • Rex M, Church R, Tointon K, Ichihashi RMA, Mokhtar S, Uwanogho D, Sharpe PT, Scotting PJ (1998) Granule cell development in the cerebellum is punctuated by changes in Sox gene expression. Mol Brain Res 55:28–34

    Article  PubMed  CAS  Google Scholar 

  • Reynolds R, Wilkin GP (1988) Development of macroglial cells in rat cerebellum. II. An in situ immunohistochemical study of oligodendroglial lineage from precursor to mature myelinating cell. Development 102:409–425

    PubMed  CAS  Google Scholar 

  • Roffler-Tarlov S, Herrup K (1981) Quantitative examination of the deep cerebellar nuclei in the staggerer mutant mouse. Brain Res 215:49–59

    Article  PubMed  CAS  Google Scholar 

  • Ross ME, Fletcher C, Mason CA, Hatten ME, Heintz N (1990) Meander tail reveals a discrete developmental unit in the mouse cerebellum. Proc Natl Acad Sci USA 87:4189–4192

    Article  PubMed  CAS  Google Scholar 

  • Ryder EF, Cepko CL (1994) Migration patterns of clonally related granule cells and their progenitors in the developing chick cerebellum. Neuron 12:1011–1029

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann SN, Bernier B, Goffinet AM (1997) Reelin mRNA expression during mouse brain development. Eur J Neurosci 9:1055–1071

    Article  PubMed  CAS  Google Scholar 

  • Schilling K, Oberdick J, Rossi F, Baader SL (2008) Besides Purkinje cells and granule neurons: an appraisal of the cell biology of the interneurons of the cerebellar cortex. Histochem Cell Biol 130:601–615

    Article  PubMed  CAS  Google Scholar 

  • Seiradake E, Del TD, Nagel D, Cop F, Hartl R, Ruff T, Seyit-Bremer G, Harlos K, Border EC, cker-Palmer A, Jones EY, Klein R (2014) FLRT structure: balancing repulsion and cell adhesion in cortical and vascular development. Neuron 84:370–385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Selmeczi D, Li L, Pedersen LII, Nrrelykke SF, Hagedorn PH, Mosler S, Larsen NB, Cox EC, Flyvbjerg H (2008) Cell motility as random motion: a review. Eur Phys J Spec Top 157:1–15

    Article  Google Scholar 

  • Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL (2005) Morphogenetic and cellular movements that shape the mouse cerebellum: insights from genetic fate mapping. Neuron 45:27–40

    PubMed  CAS  Google Scholar 

  • Sheldon M, Rice DS, D’Arcangelo G, Yoneshima H, Nakajiama K, Mikoshiba K, Howell BW, Cooper JA, Goldowitz D, Curran T (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730–733

    Article  PubMed  CAS  Google Scholar 

  • Shiga T, Ichikawa M, Hirata Y (1983a) A Golgi study of Bergmann glial cells in developing rat cerebellum. Anat Embryol (Berl) 167:191–201

    Article  CAS  Google Scholar 

  • Shiga T, Ichikawa M, Hirata Y (1983b) Spatial and temporal pattern of postnatal proliferation of Bergmann glial cells in rat cerebellum: an autoradiographic study. Anat Embryol (Berl) 167:203–211

    Article  CAS  Google Scholar 

  • Sidman RL, Lane PW, Dickie MM (1962) Staggerer, a new mutation in the mouse affecting the cerebellum. Science 137:610–612.:610–612

    Article  PubMed  CAS  Google Scholar 

  • Sievers J, Mangold U, Berry M (1985) 6-OHDA-induced ectopia of external granule cells in the subarachnoid space covering the cerebellum. III. Morphology and synaptic organization of ectopic cerebellar neurons: a scanning and transmission electron microscopic study. J Comp Neurol 232:319–330

    Article  PubMed  CAS  Google Scholar 

  • Simat M, Ambrosetti L, Lardi-Studler B, Fritschy JM (2007a) GABAergic synaptogenesis marks the onset of differentiation of basket and stellate cells in mouse cerebellum. Eur J Neurosci 26:2239–2256

    Article  PubMed  Google Scholar 

  • Simat M, Parpan F, Fritschy JM (2007b) Heterogeneity of glycinergic and gabaergic interneurons in the granule cell layer of mouse cerebellum. J Comp Neurol 500:71–83

    Article  PubMed  CAS  Google Scholar 

  • Sistig T, Lang F, Wrobel S, Baader SL, Schilling K, Eiberger B (2017) Mtss1 promotes maturation and maintenance of cerebellar neurons via splice variant-specific effects. Brain Struct Funct 222:2787–2805

    Article  PubMed  CAS  Google Scholar 

  • Steinberg MS (2007) Differential adhesion in morphogenesis: a modern view. Curr Opin Genet Dev 17:281–286

    Article  PubMed  CAS  Google Scholar 

  • Stitt TN, Hatten ME (1990) Antibodies that recognize astrotactin block granule neuron binding to astroglia. Neuron 5:639–649

    Article  PubMed  CAS  Google Scholar 

  • Sudarov A, Turnbull RK, Kim EJ, Lebel-Potter M, Guillemot F, Joyner AL (2011) Ascl1 genetics reveals insights into cerebellum local circuit assembly. J Neurosci 31:11055–11069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swanson DJ, Steshina EY, Wakenight P, Aldinger KA, Goldowitz D, Millen KJ, Chizhikov VV (2010) Phenotypic and genetic analysis of the cerebellar mutant tmgc26, a new ENU-induced ROR-alpha allele. Eur J Neurosci 32:707–716

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeo YH, Kakegawa W, Miura E, Yuzaki M (2015) RORalpha regulates multiple aspects of dendrite development in cerebellar purkinje cells in vivo. J Neurosci 35:12518–12534

    Article  PubMed  CAS  Google Scholar 

  • Tamada A, Kumada T, Zhu Y, Matsumoto T, Hatanaka Y, Muguruma K, Chen Z, Tanabe Y, Torigoe M, Yamauchi K, Oyama H, Nishida K, Murakami F (2008) Crucial roles of Robo proteins in midline crossing of cerebellofugal axons and lack of their up-regulation after midline crossing. Neural Develop 3:29

    Article  CAS  Google Scholar 

  • Tanaka DH, Yanagida M, Zhu Y, Mikami S, Nagasawa T, Miyazaki J, Yanagawa Y, Obata K, Murakami F (2009) Random walk behavior of migrating cortical interneurons in the marginal zone: time-lapse analysis in flat-mount cortex. J Neurosci 29:1300–1311

    Article  PubMed  CAS  Google Scholar 

  • Tarnok K, Czondor K, Jelitai M, Czirok A, Schlett K (2008) NMDA receptor NR2B subunit over-expression increases cerebellar granule cell migratory activity. J Neurochem 104:818–829

    PubMed  CAS  Google Scholar 

  • Theisen U, Hennig C, Ring T, Schnabel R, Koster RW (2018) Neurotransmitter-mediated activity spatially controls neuronal migration in the zebrafish cerebellum. PLoS Biol 16:e2002226

    Article  PubMed  PubMed Central  Google Scholar 

  • Tohgo A, Eiraku M, Miyazaki T, Miura E, Kawaguchi SY, Nishi M, Watanabe M, Hirano T, Kengaku M, Takeshima H (2006) Impaired cerebellar functions in mutant mice lacking DNER. Mol Cell Neurosci 31:326–333

    Article  PubMed  CAS  Google Scholar 

  • Trenkner E, Smith D, Segil N (1984) Is cerebellar granule cell migration regulated by an internal clock? J Neurosci 4:2850–2855

    Article  PubMed  CAS  Google Scholar 

  • Trivedi N, Stabley DR, Cain B, Howell D, Laumonnerie C, Ramahi JS, Temirov J, Kerekes RA, Gordon-Weeks PR, Solecki DJ (2017) Drebrin-mediated microtubule-actomyosin coupling steers cerebellar granule neuron nucleokinesis and migration pathway selection. Nat Commun 8:14484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trommersdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (1999) Reeler/disabled-like disruption of neuronal migration in knockout mice lacking VLDL receptor and ApoE receptor 2. Cell 97:689–701

    Article  Google Scholar 

  • Vilz TO, Moepps B, Engele J, Molly S, Littman DR, Schilling K (2005) The SDF-1/CXCR4 pathway and the development of the cerebellar system. Eur J Neurosci 22:1831–1839

    Article  PubMed  Google Scholar 

  • Volkmann K, Chen YY, Harris MP, Wullimann MF, Koster RW (2010) The zebrafish cerebellar upper rhombic lip generates tegmental hindbrain nuclei by long-distance migration in an evolutionary conserved manner. J Comp Neurol 518:2794–2817

    PubMed  Google Scholar 

  • Wang W, Mullikin-Kilpatrick D, Crandall JE, Gronostajski RM, Litwack ED, Kilpatrick DL (2007) Nuclear factor I coordinates multiple phases of cerebellar granule cell development via regulation of cell adhesion molecules. J Neurosci 27:6115–6127

    Article  PubMed  CAS  Google Scholar 

  • Wassef M (2013) Specification of the cerebellar territory. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F (eds) Handbook of the cerebellum and cerebellar disorders. Springer, New York, pp 3–21

    Chapter  Google Scholar 

  • Watson CM, Pelka GJ, Radziewic T, Shahbazian MD, Christodoulou J, Williamson SL, Tam PP (2005) Reduced proportion of Purkinje cells expressing paternally derived mutant Mecp2308 allele in female mouse cerebellum is not due to a skewed primary pattern of X-chromosome inactivation. Hum Mol Genet 14:1851–1861

    Article  PubMed  CAS  Google Scholar 

  • Wefers AK, Haberlandt C, Tekin NB, Fedorov DA, Timmermann A, van der Want JJL, Chaudhry FA, Steinhauser C, Schilling K, Jabs R (2017) Synaptic input as a directional cue for migrating interneuron precursors. Development 144:4125–4136

    Article  PubMed  CAS  Google Scholar 

  • Wefers AK, Haberlandt C, Surchev L, Steinhauser C, Jabs R, Schilling K (2018) Migration of interneuron precursors in the nascent cerebellar cortex. Cerebellum 17:62–71

    Article  PubMed  Google Scholar 

  • Weisheit G, Gliem M, Endl E, Pfeffer PL, Busslinger M, Schilling K (2006) Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons. Eur J Neurosci 24:466–478

    Article  PubMed  Google Scholar 

  • Weyer A, Schilling K (2003) Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum. J Neurosci Res 73:400–409

    Article  PubMed  CAS  Google Scholar 

  • Whittaker DE, Riegman KL, Kasah S, Mohan C, Yu T, Sala BP, Hebaishi H, Caruso A, Marques AC, Michetti C, Smachetti ME, Shah A, Sabbioni M, Kulhanci O, Tee WW, Reinberg D, Scattoni ML, Volk H, McGonnell I, Wardle FC, Fernandes C, Basson MA (2017) The chromatin remodeling factor CHD7 controls cerebellar development by regulating reelin expression. J Clin Invest 127:874–887

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams SE, Garcia I, Crowther AJ, Li S, Stewart A, Liu H, Lough KJ, O’Neill S, Veleta K, Oyarzabal EA, Merrill JR, Shih YY, Gershon TR (2015) Aspm sustains postnatal cerebellar neurogenesis and medulloblastoma growth in mice. Development 142:3921–3932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu YK, Umeshima H, Kurisu J, Kengaku M (2018) Nesprins and opposing microtubule motors generate a point force that drives directional nuclear motion in migrating neurons. Development 145: https://doi.org/10.1242/dev.158782

  • Xia J, Swiercz JM, Banon-Rodriguez I, Matkovic I, Federico G, Sun T, Franz T, Brakebusch CH, Kumanogoh A, Friedel RH, Martin-Belmonte F, Grone HJ, Offermanns S, Worzfeld T (2015) Semaphorin-plexin signaling controls mitotic spindle orientation during epithelial morphogenesis and repair. Dev Cell 33:299–313

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Yang Y, Tang X, Zhao M, Liang F, Xu P, Hou B, Xing Y, Bao X, Fan X (2013) Bergmann glia function in granule cell migration during cerebellum development. Mol Neurobiol 47:833–844

    Article  PubMed  CAS  Google Scholar 

  • Yacubova E, Komuro H (2002) Stage-specific control of neuronal migration by somatostatin. Nature 415:77–81

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Watanabe M (2002) Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells. Anat Sci Int 77:94–108

    Article  PubMed  Google Scholar 

  • Yamada K, Fukaya M, Shibata T, Kurihara H, Tanaka K, Inoue Y, Watanabe M (2000) Dynamic transformation of Bergmann glial fibers proceeds in correlation with dendritic outgrowth and synapse formation of cerebellar Purkinje cells. J Comp Neurol 418:106–120

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Seto Y, Taya S, Owa T, Inoue YU, Inoue T, Kawaguchi Y, Nabeshima Y, Hoshino M (2014) Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons. J Neurosci 34:4786–4800

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki T, Kawaji K, Ono K, Bito H, Hirano T, Osumi N, Kengaku M (2001) Pax6 regulates granule cell polarization during parallel fiber formation in the developing cerebellum. Development 128:3133–3144

    PubMed  CAS  Google Scholar 

  • Yeung J, Goldowitz D (2017) Wls expression in the rhombic lip orchestrates the embryonic development of the mouse cerebellum. Neuroscience 354:30–42

    Article  PubMed  CAS  Google Scholar 

  • Yu T, Yaguchi Y, Echevarria D, Martinez S, Basson MA (2011) Sprouty genes prevent excessive FGF signalling in multiple cell types throughout development of the cerebellum. Development 138:2957–2968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan W, Zhou L, Chen JH, Wu JY, Rao Y, Ornitz DM (1999) The mouse SLIT family: secreted ligands for ROBO expressed in patterns that suggest a role in morphogenesis and axon guidance. Dev Biol 212:290–306

    Article  PubMed  CAS  Google Scholar 

  • Yuasa S (1996) Bergmann glial development in the mouse cerebellum as revealed by tenascin expression. Anat Embryol 194:223–234

    Article  PubMed  CAS  Google Scholar 

  • Yuasa S, Kawamura K, Ono K, Yamakuni T, Takahashi Y (1991) Development and migration of Purkinje cells in the mouse cerebellar primordium. Anat Embryol 184:195–212

    Article  PubMed  CAS  Google Scholar 

  • Yuasa S, Kitoh J, Oda S, Kawamura K (1993) Obstructed migration of Purkinje cells in the developing cerebellum of the reeler mutant mouse. Anat Embryol 188:317–329

    Article  PubMed  CAS  Google Scholar 

  • Yuasa S, Kawamura K, Kuwano R, Ono K (1996) Neuron-glia interrelations during migration of Purkinje cells in the mouse embryonic cerebellum. Int J Devl Neurosci 14:429–438

    Article  CAS  Google Scholar 

  • Zagon IS, McLaughlin PJ (1987) The location and orientation of mitotic figures during histogenesis of the rat cerebellar cortex. Brain Res Bull 18:325–336

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Goldman JE (1996) Developmental fates and migratory pathways of dividing progenitors in the postnatal rat cerebellum. J Comp Neurol 370:536–550

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Lawler AM, Lee SJ (1999) Characterization of GDF-10 expression patterns and null mice. Dev Biol 212:68–79

    Article  PubMed  CAS  Google Scholar 

  • Zheng C, Heintz N, Hatten ME (1996) CNS gene encoding astrotactin, which supports neuronal migration along glial fibers. Science 272:417–419

    Article  PubMed  CAS  Google Scholar 

  • Zhou P, Porcionatto M, Pilapil M, Chen Y, Choi Y, Tolias KF, Bikoff JB, Hong EJ, Greenberg ME, Segal RA (2007) Polarized signaling endosomes coordinate BDNF-induced chemotaxis of cerebellar precursors. Neuron 55:53–68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuo Y-R, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank all member of our lab for their helpful discussions and patience with me. I apologize to all those whose important contributions to our understanding of cell migration and cerebellar histogenesis are not cited here. I would also like to thank the people behind the Allen Brain Atlas for establishing this database and making it publicly available. Finally, I gratefully acknowledge exceptional editorial support during preparation of this manuscript. Any shortcomings that remain are my responsibility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Schilling.

Ethics declarations

Conflict of interest

I have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schilling, K. Moving into shape: cell migration during the development and histogenesis of the cerebellum. Histochem Cell Biol 150, 13–36 (2018). https://doi.org/10.1007/s00418-018-1677-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-018-1677-6

Keywords

Navigation