Skip to main content
Log in

Use of labeled tomato lectin for imaging vasculature structures

  • Short communication
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Intravascular injections of fluorescent or biotinylated tomato lectin were tested to study labeling of vascular elements in laboratory mice. Injections of Lycopersicon esculentum agglutinin (tomato lectin) (50–100 µg/100 µl) were made intravascularly, through the tail vein, through a cannula implanted in the jugular vein, or directly into the left ventricle of the heart. Tissues cut for thin 10- to 12-µm cryostat sections, or thick 50- to 100-µm vibratome sections, were examined using fluorescence microscopy. Tissue labeled by biotinylated lectin was examined by bright field microscopy or electron microscopy after tissue processing for biotin. Intravascular injections of tomato lectin led to labeling of vascular structures in a variety of tissues, including brain, kidney, liver, intestine, spleen, skin, skeletal and cardiac muscle, and experimental tumors. Analyses of fluorescence in serum indicated the lectin was cleared from circulating blood within 2 min. Capillary labeling was apparent in tissues collected from animals within 1 min of intravascular injections, remained robust for about 1 h, and then declined markedly until difficult to detect 12 h after injection. Light microscopic images suggest the lectin bound to the endothelial cells that form capillaries and endothelial cells that line some larger vessels. Electron microscopic studies confirmed the labeling of luminal surfaces of endothelial cells. Vascular labeling by tomato lectin is compatible with a variety of other morphological labeling techniques, including histochemistry and immunocytochemistry, and thus appears to be a sensitive and useful method to reveal vascular patterns in relationship to other aspects of parenchymal development, structure, and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Alroy J, Goyal V, Skutelsky E (1987) Lectin histochemistry of mammalian endothelium. Histochemistry 86:603–607

    Article  CAS  PubMed  Google Scholar 

  • Baluk P, McDonald DM (2008) Markers for microscopic imaging of lymphangiogenesis and angiogenesis. Ann N Y Acad Sci 1131:1–12

    Article  PubMed  Google Scholar 

  • Baratta JL, Ngo A, Lopez B, Kasabwala N, Longmuir KJ, Robertson RT (2009) Cellular organization of normal mouse liver: a histological, quantitative immunocytochemical, and fine structural analysis. Histochem Cell Biol 131:713–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barondes SH (1988) Bifunctional properties of lectins: lectins redefined. Trends Biochem Sci 13:480–482

    Article  CAS  PubMed  Google Scholar 

  • Chung K, Wallace J, Kim S-Y, Kalyanasundaram S, Andalman AS, Davidson TJ, Mirzabekov JJ, Zalocusky KA, Mattis J, Denisin AK, Pak S, Bernstein H, Ramakrishnan C, Grosenick L, Gradinaru V, Deisseroth K (2013) Structural and molecular interrogation of intact biological systems. Nature 497:332–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Debbage PL, Gabius HJ, Bise K, Marguth F (1988) Cellulara glycoconjugates and their potential endogenous receptors in the cerebral microvasculature of man: a glyocohistochemical study. Eur J Cell Biol 46:425–534

    CAS  PubMed  Google Scholar 

  • Debbage PL, Griebel J, Reid M, Gneiting T, DeVries A, Hutzler P (1998) Lectin intravital perfusion studies in tumor-bearing mice: micrometer-resolution, wide-area mapping of microvascular labeling, distinguishing efficiently and inefficiently perfused microregions in the tumor. J Histochem Cytochem 46:627–639

    Article  CAS  PubMed  Google Scholar 

  • Ertürk A, Becker K, Jährling N, Mauch CP, Hojer CD, Egen JG, Hellai F, Bradke F, Sheng M, Dodt H-U (2012) Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc 7:1983–1995

    Article  PubMed  Google Scholar 

  • Fina L, Molgaard HV, Robertson D, Bradley NJ, Monaghan P, Delia D, Sutherland DR, Baker MA, Greaves MF (1990) Expression of the CD34 gene in vascular endothelial cells. Blood 75:2417–2426

    CAS  PubMed  Google Scholar 

  • Gee MS, Procopio WN, Makonnen S, Feldman MD, Yeilding NM, Lee WM (2003) Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy. Am J Pathol 162:183–193

    Article  PubMed Central  PubMed  Google Scholar 

  • Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hong G, Diao S, Chang J, Antaris AL, Chen C, Zhang B, Zhao S, Atochin DN, Huang PL, Andreasson K, Kuo CJ, Dai H (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8:723–730

    Article  CAS  Google Scholar 

  • Huang JZ, Frischer JS, Serur A, Kadenhe A, Yokoi A, McCrudden KW, New T, O’Toole K, Zabski S, Rudge JS, Holash J, Yancopoulos GD, Yamashiro DJ, Kandel JJ (2003) Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. Proc Natl Acad Sci USA 100:7785–7790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inai T, Manusco M, Hashizume H, Baffert F, Haskell A, Baluk P, Hu-Lowe DD, Shalinsky DR, Thurston G, Yancopoulos GD, McDonald DM (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165:35–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Janssen B, Debets J, Leenders P, Smits J (2002) Chronic measurement of cardiac output in conscious mice. Am J Physiol Regul Integr Comp Physiol 282:R928–R935

    CAS  PubMed  Google Scholar 

  • Jilani SM, Murphy TJ, Thai SN, Eichmann A, Alva JA, Iruela-Arispe ML (2003) Selective binding of lectins to embryonic chicken vasculature. J Histochem Cytochem 51:597–604

    Article  CAS  PubMed  Google Scholar 

  • Kawashima H, Sueyoshi S, Li H, Yamamoto K, Osawa T (1990) Carbohydrate binding-specificities of several poly-N-acetyllactosamine-binding lectins. Glycoconj J 7:323–334

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Kim DC, Gee MS, Saunders HM, Sehgal CM, Feldman MD, Ross SR, Lee WM (2002) Interleukin-12 inhibits angiogenesis and growth of transplanted but not in situ mouse mammary tumor virus-induced mammary carcinomas. Cancer Res 62:747–755

    CAS  PubMed  Google Scholar 

  • Lokmic Z, Mitchell GM (2011) Visualisation and stereological assessment of blood and lymphatic vessels. Histol Histopathol 26:7781–7796

    Google Scholar 

  • Longmuir KJ, Robertson RT, Haynes SM, Baratta JL, Waring AJ (2006) Effective targeting of liposomes to liver and hepatocytes in vivo by incorporation of a Plasmodium amino acid sequence. Pharm Res 23:759–769

    Article  CAS  PubMed  Google Scholar 

  • Longmuir KJ, Haynes SM, Baratta J, Kasabwala N, Robertson RT (2009) Liposomal delivery of doxorubicin to liver and hepatocytes in vivo by targeting hepatic heparan sulfate glycosaminoglycan. Int J Pharmaceut 382:222–233

    Article  CAS  Google Scholar 

  • Mazzetti S, Frigerio S, Gelati M, Salmaggi A, Vitellaro-Zuccarello L (2004) Lycopersicon esculentum lectin: an effective and versatile endothelial marker of normal and tumoral blood vessels in the central nervous system. Eur J Histochem 48:423–428

    Article  CAS  PubMed  Google Scholar 

  • Nachbar MS, Oppenheim JD, Thomas JO (1980) Lectins in the U.S. Diet. Isolation and characterization of a lectin from the tomato (Lycopersicon esculentum). J Biol Chem 255:2056–2061

    CAS  PubMed  Google Scholar 

  • Nag S (1985) Ultrastructural localization of lectin receptors on cerebral endothelium. Acta Neuropathol (Berl) 66:105–110

    Article  CAS  Google Scholar 

  • Newman PJ, Albelda SM (1992) Cellular and molecular aspects of PECAM-1. Nouv Rev Fr Hematol 34(Suppl):S9–S13

    CAS  PubMed  Google Scholar 

  • Oguri S (2005) Analysis of sugar chain-binding specificity of tomato lectin using lectin blot: recognition of high mannose-type N-glycans produced by plants and yeast. Glycoconj J 22:453–461

    Article  CAS  PubMed  Google Scholar 

  • Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M (2014) iDISCO; A simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159:896–910

    Article  CAS  PubMed  Google Scholar 

  • Robertson RT, Baratta JL, Haynes SM, Longmuir KJ (2008) Liposomes incorporating a plasmodium amino acid sequence target heparin sulfate binding sites in liver. J Pharm Sci 97:3257–3273

    Article  CAS  PubMed  Google Scholar 

  • Rutishauser U, Sachs L (1975) Cell-to-cell binding induced by different lectins. J Cell Biol 65:247–257

    Article  CAS  PubMed  Google Scholar 

  • Simionescu M, Simionescu N, Palade GE (1982) Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors. J Cell Biol 94:406–413

    Article  CAS  PubMed  Google Scholar 

  • Simon BH, Ando HY, Gupta PK (1995) Circulation time and body distribution of 14C-labeled amino-modified polystyrene nanoparticles in mice. J Pharm Sci 84:1249–1253

    Article  CAS  PubMed  Google Scholar 

  • Smolkova O, Zavadka A, Bankston P, Lutsyk A (2001) Cellular heterogeneity of rat vascular endothelium as detected by HPA and GS I lectin-gold probes. Med Sci Monit 7:659–668

    CAS  PubMed  Google Scholar 

  • Trotter MJ, Chaplin DJ, Olive PL (1989) Use of a carbocyanine dye as a marker of functional vasculature in murine tumours. Br J Cancer 59:706–709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wisse E (1970) An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res 31:125–150

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Murata T, Kawagishi H, Usui T, Kobayashi K (1998) Analysis of specific interactions of synthetic glycopolypeptides carrying N-acetyllactosamine and related compounds with lectins. Carbohydr Res 312:209–217

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by funds from the California Cancer Research Coordinating Committee, and by the National Cancer Institute of the NIH award P30CA062203. We thank Dr. Oswald Steward and the Reeve-Irvine Research Center for use of the Microm cryostat and the electron microscopic facilities. Special thanks to Ms. Ilse Sears-Kraxberger for technical assistance with electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Robertson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robertson, R.T., Levine, S.T., Haynes, S.M. et al. Use of labeled tomato lectin for imaging vasculature structures. Histochem Cell Biol 143, 225–234 (2015). https://doi.org/10.1007/s00418-014-1301-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1301-3

Keywords

Navigation