Skip to main content
Log in

Serotonergic innervation of the amygdala: targets, receptors, and implications for stress and anxiety

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The amygdala is a core component of neural circuits that mediate processing of emotional, particularly anxiety and fear-related stimuli across species. In addition, the nuclear complex plays a key role in the central nervous system stress response, and alterations in amygdala responsivity are found in neuropsychiatric disorders, especially those precipitated or sustained by stressors. Serotonin has been shown to shape and fine-tune neural plasticity in development and adulthood, thereby allowing for network flexibility and adaptive capacity in response to environmental challenges, and is implicated in the modulation of stimulus processing and stress sensitivity in the amygdala. The fact that altered amygdala activity patterns are observed upon pharmacological manipulations of serotonergic transmission, as well as in carriers of genetic variations in serotonin pathway-associated signaling molecules representing risk factors for neuropsychiatric disorders, underlines the importance of understanding the role and mode of action of serotonergic transmission in the amygdala for human psychopathology. Here, we present a short overview over organizational principles of the amygdala in rodents, non-human primates and humans, and review findings on the origin, morphology, and targets of serotonergic innervation, the distribution patterns and cellular expression of serotonin receptors, and the consequences of stress and pharmacological manipulations of serotonergic transmission in the amygdala, focusing particularly on the extensively studied basolateral complex and central nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

5-HT:

5-Hydroxytryptamin, serotonin

5-HTR:

Serotonin receptor(s)

5-HTT:

Serotonin transporter

AMPA:

Amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid

BL:

Basolateral nucleus

BLA:

Basolateral amygdala

BLC:

Basolateral complex

BM:

Basomedial nucleus

BNST:

Bed nucleus of the stria terminalis

CaMK:

Calcium/calmodulin-dependent protein kinase II

CB:

Calbindin

CB1:

Cannabinoid-receptor 1

CCK:

Cholecystokinin

Ce:

Central nucleus

CeL:

Lateral central nucleus

CeLc:

Lateral capsular subdivision of the central nucleus

CeM:

Medial central nucleus

CNS:

Central nervous system

Co:

Cortical nucleus

CR:

Calretinin

CRF:

Corticotropin releasing factor

DR:

Dorsal raphe nuclei

ENK:

Enkephalin

ERK:

Extracellular signal-regulated kinase(s)

GABA:

Gamma-amino butyric acid

GAD:

Glutamic acid decarboxylase

IC:

Intercalated cells

ICps:

Paracapsular intercalated cell islands

IHC:

Immunohistochemistry

i.p.:

Intraperitoneal

ir:

Immunoreactive

ISH:

In situ hybridization

La:

Lateral nucleus

Leu-ENK:

Leu-enkephalin

Me:

Medial nucleus

Met-ENK:

Met-enkephalin

MR:

Median raphe nuclei

NMDA:

N-methyl-d-aspartate

NK-1:

Neurokinin-1 receptor

NPY:

Neuropeptide Y

PAC:

Periamygdaloid cortex

PL:

Paralaminar nucleus

PV:

Parvalbumin

SOM:

Somatostatin

SSRI:

Selective serotonin reuptake inhibitor

Tph2:

Tryptophan hydroxylase 2

VIP:

Vasoactive intestinal polypeptide

References

  • Abrams JK, Johnson PL, Hollis JH, Lowry CA (2004) Anatomic and functional topography of the dorsal raphe nucleus. Ann N Y Acad Sci 1018:46–57

    Article  PubMed  Google Scholar 

  • Abrams JK, Johnson PL, Hay-Schmidt A, Mikkelsen JD, Shekhar A, Lowry CA (2005) Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs. Neuroscience 133:983–997

    Article  PubMed  CAS  Google Scholar 

  • Agnati LF, Fuxe K, Zoli M, Ozini I, Toffano G, Ferraguti F (1986) A correlation analysis of the regional distribution of central enkephalin and beta-endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: the volume transmission and the wiring transmission. Acta Physiol Scand 128:201–207

    Article  PubMed  CAS  Google Scholar 

  • Agnati LF, Zoli M, Stromberg I, Fuxe K (1995) Intercellular communication in the brain: wiring versus volume transmission. Neuroscience 69:711–726

    Article  PubMed  CAS  Google Scholar 

  • Agnati LF, Guidolin D, Guescini M, Genedani S, Fuxe K (2010) Understanding wiring and volume transmission. Brain Res Rev 64:137–159

    Article  PubMed  Google Scholar 

  • Akmaev IG, Kalimullina LB, Sharipova LA (2004) The central nucleus of the amygdaloid body of the brain: cytoarchitectonics, neuronal organization, connections. Neurosci Behav Physiol 34:603–610

    Article  PubMed  CAS  Google Scholar 

  • Albizu L, Holloway T, Gonzalez-Maeso J, Sealfon SC (2011) Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors. Neuropharmacology 61:770–777

    Article  PubMed  CAS  Google Scholar 

  • Alheid GF (2003) Extended amygdala and basal forebrain. Ann N Y Acad Sci 985:185–205

    Article  PubMed  CAS  Google Scholar 

  • Alheid GF, de Olmos JS, Beltramino CA (1995) Amygdala and extended amygdala. In: Paxinos G (ed) The rat nervous system. Academic Press, London, pp 495–578

    Google Scholar 

  • Allen JA, Yadav PN, Roth BL (2008) Insights into the regulation of 5-HT2A serotonin receptors by scaffolding proteins and kinases. Neuropharmacology 55:961–968

    Article  PubMed  CAS  Google Scholar 

  • Amaral DG, Price JL, Pitkänen A, Carmichael ST (1992) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. In: Aggleton JP (ed) Anatomical organization of the primate amygdaloid complex. Wiley-Liss, New York, pp 1–66

    Google Scholar 

  • Amat J, Matus-Amat P, Watkins LR, Maier SF (1998) Escapable and inescapable stress differentially alter extracellular levels of 5-HT in the basolateral amygdala of the rat. Brain Res 812:113–120

    Article  PubMed  CAS  Google Scholar 

  • Amat J, Tamblyn JP, Paul ED, Bland ST, Amat P, Foster AC, Watkins LR, Maier SF (2004) Microinjection of urocortin 2 into the dorsal raphe nucleus activates serotonergic neurons and increases extracellular serotonin in the basolateral amygdala. Neuroscience 129:509–519

    Article  PubMed  CAS  Google Scholar 

  • Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF (2005) Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci 8:365–371

    Article  PubMed  CAS  Google Scholar 

  • Andrade R (2011) Serotonergic regulation of neuronal excitability in the prefrontal cortex. Neuropharmacology 61:382–386

    Article  PubMed  CAS  Google Scholar 

  • Arce E, Simmons AN, Lovero KL, Stein MB, Paulus MP (2008) Escitalopram effects on insula and amygdala BOLD activation during emotional processing. Psychopharmacology 196:661–672

    Article  PubMed  CAS  Google Scholar 

  • Asan E (1997) Interrelationships between tyrosine hydroxylase-immunoreactive dopaminergic afferents and somatostatinergic neurons in the rat central amygdaloid nucleus. Histochem Cell Biol 107:65–79

    Article  PubMed  CAS  Google Scholar 

  • Asan E (1998) The catecholaminergic innervation of the rat amygdala. Adv Anat Embryol Cell Biol 142:1–118

    Article  PubMed  CAS  Google Scholar 

  • Asan E, Yilmazer-Hanke DM, Eliava M, Hantsch M, Lesch KP, Schmitt A (2005) The corticotropin-releasing factor (CRF)-system and monoaminergic afferents in the central amygdala: investigations in different mouse strains and comparison with the rat. Neuroscience 131:953–967

    Article  PubMed  CAS  Google Scholar 

  • Avila MA, Real MA, Guirado S (2011) Patterns of GABA and GABA Transporter-1 immunoreactivities in the developing and adult mouse brain amygdala. Brain Res 1388:1–11

    Article  PubMed  CAS  Google Scholar 

  • Azmitia EC, Gannon PJ, Kheck NM, Whitaker-Azmitia PM (1996) Cellular localization of the 5-HT1A receptor in primate brain neurons and glial cells. Neuropsychopharmacology 14:35–46

    Article  PubMed  CAS  Google Scholar 

  • Aznar S, Qian Z, Shah R, Rahbek B, Knudsen GM (2003) The 5-HT1A serotonin receptor is located on calbindin- and parvalbumin-containing neurons in the rat brain. Brain Res 959:58–67

    Article  PubMed  CAS  Google Scholar 

  • Barad M, Gean PW, Lutz B (2006) The role of the amygdala in the extinction of conditioned fear. Biol Psychiatry 60:322–328

    Article  PubMed  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    Article  PubMed  CAS  Google Scholar 

  • Barton DA, Esler MD, Dawood T, Lambert EA, Haikerwal D, Brenchley C, Socratous F, Hastings J, Guo L, Wiesner G, Kaye DM, Bayles R, Schlaich MP, Lambert GW (2008) Elevated brain serotonin turnover in patients with depression: effect of genotype and therapy. Arch Gen Psychiatry 65:38–46

    Article  PubMed  CAS  Google Scholar 

  • Bassett JL, Foote SL (1992) Distribution of corticotropin-releasing factor-like immunoreactivity in squirrel monkey (Saimiri sciureus) amygdala. J Comp Neurol 323:91–102

    Article  PubMed  CAS  Google Scholar 

  • Bauman MD, Amaral DG (2005) The distribution of serotonergic fibers in the macaque monkey amygdala: an immunohistochemical study using antisera to 5-hydroxytryptamine. Neuroscience 136:193–203

    Article  PubMed  CAS  Google Scholar 

  • Becamel C, Gavarini S, Chanrion B, Alonso G, Galeotti N, Dumuis A, Bockaert J, Marin P (2004) The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins. J Biol Chem 279:20257–20266

    Article  PubMed  CAS  Google Scholar 

  • Belova MA, Paton JJ, Salzman CD (2008) Moment-to-moment tracking of state value in the amygdala. J Neurosci 28:10023–10030

    Article  PubMed  CAS  Google Scholar 

  • Berretta S (2005) Cortico-amygdala circuits: role in the conditioned stress response. Stress 8:221–232

    Article  PubMed  Google Scholar 

  • Bhatnagar S, Vining C, Denski K (2004) Regulation of chronic stress-induced changes in hypothalamic-pituitary-adrenal activity by the basolateral amygdala. Ann N Y Acad Sci 1032:315–319

    Article  PubMed  CAS  Google Scholar 

  • Bigos KL, Pollock BG, Aizenstein HJ, Fisher PM, Bies RR, Hariri AR (2008) Acute 5-HT reuptake blockade potentiates human amygdala reactivity. Neuropsychopharmacology 33:3221–3225

    Article  PubMed  CAS  Google Scholar 

  • Bjork K, Sjogren B, Svenningsson P (2010) Regulation of serotonin receptor function in the nervous system by lipid rafts and adaptor proteins. Exp Cell Res 316:1351–1356

    Article  PubMed  CAS  Google Scholar 

  • Boll S, Gamer M, Kalisch R, Buchel C (2011) Processing of facial expressions and their significance for the observer in subregions of the human amygdala. NeuroImage 56:299–306

    Article  PubMed  Google Scholar 

  • Bombardi C (2011) Distribution of 5-HT2A receptor immunoreactivity in the rat amygdaloid complex and colocalization with gamma-aminobutyric acid. Brain Res 1370:112–128

    Article  PubMed  CAS  Google Scholar 

  • Bonn M, Schmitt A, Asan E (2012) Double and triple in situ hybridization for coexpression studies: combined fluorescent and chromogenic detection of neuropeptide Y (NPY) and serotonin receptor subtype mRNAs expressed at different abundance levels. Histochem Cell Biol 137:11–24

    Article  PubMed  CAS  Google Scholar 

  • Bonn M, Schmitt A, Lesch KP, Van Bockstaele EJ, Asan E (2013) Serotonergic innervation and serotonin receptor expression of NPY-producing neurons in the rat lateral and basolateral amygdaloid nuclei. Brain Struct Funct 218:421–435

    Article  PubMed  CAS  Google Scholar 

  • Bosker FJ, Cremers TI, Jongsma ME, Westerink BH, Wikstrom HV, den Boer JA (2001) Acute and chronic effects of citalopram on postsynaptic 5-hydroxytryptamine(1A) receptor-mediated feedback: a microdialysis study in the amygdala. J Neurochem 76:1645–1653

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Molliver ME (2000) Dual serotonin (5-HT) projections to the nucleus accumbens core and shell: relation of the 5-HT transporter to amphetamine-induced neurotoxicity. J Neurosci 20:1952–1963

    PubMed  CAS  Google Scholar 

  • Bunin MA, Wightman RM (1998) Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: an investigation of extrasynaptic transmission. J Neurosci 18:4854–4860

    PubMed  CAS  Google Scholar 

  • Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, Emeson RB (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387:303–308

    Article  PubMed  CAS  Google Scholar 

  • Campbell BM, Merchant KM (2003) Serotonin 2C receptors within the basolateral amygdala induce acute fear-like responses in an open-field environment. Brain Res 993:1–9

    Article  PubMed  CAS  Google Scholar 

  • Canli T, Lesch KP (2007) Long story short: the serotonin transporter in emotion regulation and social cognition. Nat Neurosci 10:1103–1109

    Article  PubMed  CAS  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    Article  PubMed  Google Scholar 

  • Cassell MD, Gray TS, Kiss JZ (1986) Neuronal architecture in the rat central nucleus of the amygdala: a cytological, hodological, and immunocytochemical study. J Comp Neurol 246:478–499

    Article  PubMed  CAS  Google Scholar 

  • Centeno ML, Sanchez RL, Reddy AP, Cameron JL, Bethea CL (2007) Corticotropin-releasing hormone and pro-opiomelanocortin gene expression in female monkeys with differences in sensitivity to stress. Neuroendocrinology 86:277–288

    Article  PubMed  CAS  Google Scholar 

  • Charnay Y, Leger L (2010) Brain serotonergic circuitries. Dialogues Clin Neurosci 12:471–487

    PubMed  Google Scholar 

  • Charney DS (2003) Neuroanatomical circuits modulating fear andanxiety behaviors. Acta Psychiatr Scand Suppl 417:38–50

    Article  PubMed  Google Scholar 

  • Christianson JP, Ragole T, Amat J, Greenwood BN, Strong PV, Paul ED, Fleshner M, Watkins LR, Maier SF (2010) 5-hydroxytryptamine 2C receptors in the basolateral amygdala are involved in the expression of anxiety after uncontrollable traumatic stress. Biol Psychiatry 67:339–345

    Article  PubMed  CAS  Google Scholar 

  • Ciocchi S, Herry C, Grenier F, Wolff SB, Letzkus JJ, Vlachos I, Ehrlich I, Sprengel R, Deisseroth K, Stadler MB, Muller C, Luthi A (2010) Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468:277–282

    Article  PubMed  CAS  Google Scholar 

  • Clemett DA, Punhani T, Duxon MS, Blackburn TP, Fone KC (2000) Immunohistochemical localisation of the 5-HT2C receptor protein in the rat CNS. Neuropharmacology 39:123–132

    Article  PubMed  CAS  Google Scholar 

  • Cliffer KD, Burstein R, Giesler GJ Jr (1991) Distributions of spinothalamic, spinohypothalamic, and spinotelencephalic fibers revealed by anterograde transport of PHA-L in rats. J Neurosci 11:852–868

    PubMed  CAS  Google Scholar 

  • Commons KG, Connolley KR, Valentino RJ (2003) A neurochemically distinct dorsal raphe-limbic circuit with a potential role in affective disorders. Neuropsychopharmacology 28:206–215

    Article  PubMed  CAS  Google Scholar 

  • Compan V (2007) Do limits of neuronal plasticity represent an opportunity for mental diseases, such as addiction to food and illegal drugs? Use and utilities of serotonin receptor knock-out mice. In: Chattopadhay A (ed) Serotonin receptors in neurobiology, Frontiers in Neuroscience, chap 8. CRC Press, Boca Raton

  • Conti LH, Costello DG, Martin LA, White MF, Abreu ME (1994) Mouse strain differences in the behavioral effects of corticotropin-releasing factor (CRF) and the CRF antagonist alpha-helical CRF9-41. Pharmacol Biochem Behav 48:497–503

    Article  PubMed  CAS  Google Scholar 

  • Cools R, Calder AJ, Lawrence AD, Clark L, Bullmore E, Robbins TW (2005) Individual differences in threat sensitivity predict serotonergic modulation of amygdala response to fearful faces. Psychopharmacology 180:670–679

    Article  PubMed  CAS  Google Scholar 

  • Cornea-Hebert V, Riad M, Wu C, Singh SK, Descarries L (1999) Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol 409:187–209

    Article  PubMed  CAS  Google Scholar 

  • Coste SC, Kesterson RA, Heldwein KA, Stevens SL, Heard AD, Hollis JH, Murray SE, Hill JK, Pantely GA, Hohimer AR, Hatton DC, Phillips TJ, Finn DA, Low MJ, Rittenberg MB, Stenzel P, Stenzel-Poore MP (2000) Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nat Genet 24:403–409

    Article  PubMed  CAS  Google Scholar 

  • Crawford LK, Craige CP, Beck SG (2010) Increased intrinsic excitability of lateral wing serotonin neurons of the dorsal raphe: a mechanism for selective activation in stress circuits. J Neurophysiol 103:2652–2663

    Article  PubMed  CAS  Google Scholar 

  • Damsa C, Kosel M, Moussally J (2009) Current status of brain imaging in anxiety disorders. Curr Opin Psychiatry 22:96–110

    Article  PubMed  Google Scholar 

  • Davila JC, Olmos L, Legaz I, Medina L, Guirado S, Real MA (2008) Dynamic patterns of colocalization of calbindin, parvalbumin and GABA in subpopulations of mouse basolateral amygdalar cells during development. J Chem Neuroanat 35:67–76

    Article  PubMed  CAS  Google Scholar 

  • Davis M (1992) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375

    Article  PubMed  CAS  Google Scholar 

  • deCampo DM, Fudge JL (2012) Where and what is the paralaminar nucleus? A review on a unique and frequently overlooked area of the primate amygdala. Neurosci Biobehav Rev 36:520–535

    Article  PubMed  Google Scholar 

  • Descarries L, Cornea-Hébert V, Riad M (2006) Cellular and subcellular localization of serotonin receptors in the central nervous system. In: Roth BL (ed) The serotonin receptors: from molecular pharmacology to human therapeutics. Humana Press, Totowa, NJ, pp 277–317

    Chapter  Google Scholar 

  • Dirks A, de Jongh R, Groenink L, van der Gugten J, Hijzen TH, Olivier B (2001) Footshock-induced sensitization of the acoustic startle response in two strains of mice. Behav Brain Res 123:17–21

    Article  PubMed  CAS  Google Scholar 

  • Drago A, Serretti A (2009) Focus on HTR2C: a possible suggestion for genetic studies of complex disorders. Am J Med Genet B Neuropsychiatr Genet 150B:601–637

    Article  PubMed  CAS  Google Scholar 

  • Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213:93–118

    Article  PubMed  Google Scholar 

  • Duchesne A, Dufresne MM, Sullivan RM (2009) Sex differences in corticolimbic dopamine and serotonin systems in the rat and the effect of postnatal handling. Prog Neuropsychopharmacol Biol Psychiatry 33:251–261

    Article  PubMed  CAS  Google Scholar 

  • Duvarci S, Popa D, Pare D (2011) Central amygdala activity during fear conditioning. J Neurosci 31:289–294

    Article  PubMed  CAS  Google Scholar 

  • Duxon MS, Kennett GA, Lightowler S, Blackburn TP, Fone KC (1997) Activation of 5-HT2B receptors in the medial amygdala causes anxiolysis in the social interaction test in the rat. Neuropharmacology 36:601–608

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Luthi A (2009) Amygdala inhibitory circuits and the control of fear memory. Neuron 62:757–771

    Article  PubMed  CAS  Google Scholar 

  • Eliava M, Yilmazer-Hanke D, Asan E (2003) Interrelations between monoaminergic afferents and corticotropin-releasing factor-immunoreactive neurons in the rat central amygdaloid nucleus: ultrastructural evidence for dopaminergic control of amygdaloid stress systems. Histochem Cell Biol 120:183–197

    Article  PubMed  CAS  Google Scholar 

  • Englander MT, Dulawa SC, Bhansali P, Schmauss C (2005) How stress and fluoxetine modulate serotonin 2C receptor pre-mRNA editing. J Neurosci 25:648–651

    Article  PubMed  CAS  Google Scholar 

  • Entis JJ, Doerga P, Barrett LF, Dickerson BC (2012) A reliable protocol for the manual segmentation of the human amygdala and its subregions using ultra-high resolution MRI. NeuroImage 60:1226–1235

    Article  PubMed  Google Scholar 

  • Esler M, Lambert E, Alvarenga M, Socratous F, Richards J, Barton D, Pier C, Brenchley C, Dawood T, Hastings J, Guo L, Haikerwal D, Kaye D, Jennings G, Kalff V, Kelly M, Wiesner G, Lambert G (2007) Increased brain serotonin turnover in panic disorder patients in the absence of a panic attack: reduction by a selective serotonin reuptake inhibitor. Stress 10:295–304

    Article  PubMed  CAS  Google Scholar 

  • Evans AK, Heerkens JL, Lowry CA (2009) Acoustic stimulation in vivo and corticotropin-releasing factor in vitro increase tryptophan hydroxylase activity in the rat caudal dorsal raphe nucleus. Neurosci Lett 455:36–41

    Article  PubMed  CAS  Google Scholar 

  • Everitt BJ, Parkinson JA, Olmstead MC, Arroyo M, Robledo P, Robbins TW (1999) Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Ann N Y Acad Sci 877:412–438

    Article  PubMed  CAS  Google Scholar 

  • Evers EA, Sambeth A, Ramaekers JG, Riedel WJ, van der Veen FM (2010) The effects of acute tryptophan depletion on brain activation during cognition and emotional processing in healthy volunteers. Curr Pharm Des 16:1998–2011

    Article  PubMed  CAS  Google Scholar 

  • Fallon JH, Ciofi P (1992) Distribution of monoamines within the amygdala. In: Aggleton JP (ed) The amygdala. Wiley-Liss, New York, pp 97–114

    Google Scholar 

  • Feldman S, Newman ME, Weidenfeld J (2000) Effects of adrenergic and serotonergic agonists in the amygdala on the hypothalamo-pituitary-adrenocortical axis. Brain Res Bull 52:531–536

    Article  PubMed  CAS  Google Scholar 

  • Fernandez SP, Gaspar P (2011) Investigating anxiety and depressive-like phenotypes in genetic mouse models of serotonin depletion. Neuropharmacology 62:144–154

    Article  PubMed  CAS  Google Scholar 

  • Fink KB, Gothert M (2007) 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev 59:360–417

    PubMed  CAS  Google Scholar 

  • Forster GL, Feng N, Watt MJ, Korzan WJ, Mouw NJ, Summers CH, Renner KJ (2006) Corticotropin-releasing factor in the dorsal raphe elicits temporally distinct serotonergic responses in the limbic system in relation to fear behavior. Neuroscience 141:1047–1055

    Article  PubMed  CAS  Google Scholar 

  • Forster GL, Pringle RB, Mouw NJ, Vuong SM, Watt MJ, Burke AR, Lowry CA, Summers CH, Renner KJ (2008) Corticotropin-releasing factor in the dorsal raphe nucleus increases medial prefrontal cortical serotonin via type 2 receptors and median raphe nucleus activity. Eur J Neurosci 28:299–310

    Article  PubMed  Google Scholar 

  • Freedman LJ, Shi C (2001) Monoaminergic innervation of the macaque extended amygdala. Neuroscience 104:1067–1084

    Article  PubMed  CAS  Google Scholar 

  • Fribourg M, Moreno JL, Holloway T, Provasi D, Baki L, Mahajan R, Park G, Adney SK, Hatcher C, Eltit JM, Ruta JD, Albizu L, Li Z, Umali A, Shim J, Fabiato A, MacKerell AD Jr, Brezina V, Sealfon SC, Filizola M, Gonzalez-Maeso J, Logothetis DE (2011) Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 147:1011–1023

    Article  PubMed  CAS  Google Scholar 

  • Fudge JL, Tucker T (2009) Amygdala projections to central amygdaloid nucleus subdivisions and transition zones in the primate. Neuroscience 159:819–841

    Article  PubMed  CAS  Google Scholar 

  • Furmark T (2009) Neurobiological aspects of social anxiety disorder. Isr J Psychiatry Relat Sci 46:5–12

    PubMed  Google Scholar 

  • Fuxe K, Dahlstrom A, Hoistad M, Marcellino D, Jansson A, Rivera A, Diaz-Cabiale Z, Jacobsen K, Tinner-Staines B, Hagman B, Leo G, Staines W, Guidolin D, Kehr J, Genedani S, Belluardo N, Agnati LF (2007) From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission. Brain Res Rev 55:17–54

    Article  PubMed  CAS  Google Scholar 

  • Gardner KL, Thrivikraman KV, Lightman SL, Plotsky PM, Lowry CA (2005) Early life experience alters behavior during social defeat: focus on serotonergic systems. Neuroscience 136:181–191

    Article  PubMed  CAS  Google Scholar 

  • Gardner KL, Hale MW, Oldfield S, Lightman SL, Plotsky PM, Lowry CA (2009) Adverse experience during early life and adulthood interact to elevate tph2 mRNA expression in serotonergic neurons within the dorsal raphe nucleus. Neuroscience 163:991–1001

    Article  PubMed  CAS  Google Scholar 

  • Goldstein LE, Rasmusson AM, Bunney BS, Roth RH (1996) Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. J Neurosci 16:4787–4798

    PubMed  CAS  Google Scholar 

  • Gonzalez LE, Andrews N, File SE (1996) 5-HT1A and benzodiazepine receptors in the basolateral amygdala modulate anxiety in the social interaction test, but not in the elevated plus-maze. Brain Res 732:145–153

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, Lopez-Gimenez JF, Zhou M, Okawa Y, Callado LF, Milligan G, Gingrich JA, Filizola M, Meana JJ, Sealfon SC (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452:93–97

    Article  PubMed  CAS  Google Scholar 

  • Gothard KM, Battaglia FP, Erickson CA, Spitler KM, Amaral DG (2007) Neural responses to facial expression and face identity in the monkey amygdala. J Neurophysiol 97:1671–1683

    Article  PubMed  CAS  Google Scholar 

  • Graeff FG (2002) On serotonin and experimental anxiety. Psychopharmacology 163:467–476

    Article  PubMed  CAS  Google Scholar 

  • Graeff FG, Guimaraes FS, De Andrade TG, Deakin JF (1996) Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav 54:129–141

    Article  PubMed  CAS  Google Scholar 

  • Grahn RE, Will MJ, Hammack SE, Maswood S, McQueen MB, Watkins LR, Maier SF (1999) Activation of serotonin-immunoreactive cells in the dorsal raphe nucleus in rats exposed to an uncontrollable stressor. Brain Res 826:35–43

    Article  PubMed  CAS  Google Scholar 

  • Gray TS (1993) Amygdaloid CRF pathways. Role in autonomic, neuroendocrine, and behavioral responses to stress. Ann N Y Acad Sci 697:53–60

    Article  PubMed  CAS  Google Scholar 

  • Greenwood BN, Strong PV, Loughridge AB, Day HE, Clark PJ, Mika A, Hellwinkel JE, Spence KG, Fleshner M (2012) 5-HT2C receptors in the basolateral amygdala and dorsal striatum are a novel target for the anxiolytic and antidepressant effects of exercise. PLoS ONE 7:e46118

    Article  PubMed  CAS  Google Scholar 

  • Groenink L, Joordens RJ, Hijzen TH, Dirks A, Olivier B (2000) Infusion of flesinoxan into the amygdala blocks the fear-potentiated startle. NeuroReport 11:2285–2288

    Article  PubMed  CAS  Google Scholar 

  • Groenink L, Pattij T, De Jongh R, Van der Gugten J, Oosting RS, Dirks A, Olivier B (2003) 5-HT1A receptor knockout mice and mice overexpressing corticotropin-releasing hormone in models of anxiety. Eur J Pharmacol 463:185–197

    Article  PubMed  CAS  Google Scholar 

  • Guest PC, Salim K, Skynner HA, George SE, Bresnick JN, McAllister G (2000) Identification and characterization of a truncated variant of the 5-hydroxytryptamine(2A) receptor produced by alternative splicing. Brain Res 876:238–244

    Article  PubMed  CAS  Google Scholar 

  • Gurevich EV, Joyce JN (1996) Comparison of [3H]paroxetine and [3H]cyanoimipramine for quantitative measurement of serotonin transporter sites in human brain. Neuropsychopharmacology 14:309–323

    Article  PubMed  CAS  Google Scholar 

  • Gurevich I, Englander MT, Adlersberg M, Siegal NB, Schmauss C (2002) Modulation of serotonin 2C receptor editing by sustained changes in serotonergic neurotransmission. J Neurosci 22:10529–10532

    PubMed  CAS  Google Scholar 

  • Gutknecht L, Kriegebaum C, Waider J, Schmitt A, Lesch KP (2009) Spatio-temporal expression of tryptophan hydroxylase isoforms in murine and human brain: convergent data from Tph2 knockout mice. Eur Neuropsychopharmacol 19:266–282

    Article  PubMed  CAS  Google Scholar 

  • Hackler EA, Airey DC, Shannon CC, Sodhi MS, Sanders-Bush E (2006) 5-HT(2C) receptor RNA editing in the amygdala of C57BL/6 J, DBA/2 J, and BALB/cJ mice. Neurosci Res 55:96–104

    Article  PubMed  CAS  Google Scholar 

  • Hackler EA, Turner GH, Gresch PJ, Sengupta S, Deutch AY, Avison MJ, Gore JC, Sanders-Bush E (2007) 5-Hydroxytryptamine2C receptor contribution to m-chlorophenylpiperazine and N-methyl-beta-carboline-3-carboxamide-induced anxiety-like behavior and limbic brain activation. J Pharmacol Exp Ther 320:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Hafizi S, Serres F, Pei Q, Totterdell S, Sharp T (2011) Evidence for the differential co-localization of neurokinin-1 receptors with 5-HT receptor subtypes in rat forebrain. J Psychopharmacol 26(4):505–515

    Google Scholar 

  • Halberstadt AL, Balaban CD (2006) Serotonergic and nonserotonergic neurons in the dorsal raphe nucleus send collateralized projections to both the vestibular nuclei and the central amygdaloid nucleus. Neuroscience 140:1067–1077

    Article  PubMed  CAS  Google Scholar 

  • Hale MW, Lowry CA (2010) Functional topography of midbrain and pontine serotonergic systems: implications for synaptic regulation of serotonergic circuits. Psychopharmacology 213:243–264

    Article  PubMed  CAS  Google Scholar 

  • Hale MW, Hay-Schmidt A, Mikkelsen JD, Poulsen B, Bouwknecht JA, Evans AK, Stamper CE, Shekhar A, Lowry CA (2008) Exposure to an open-field arena increases c-Fos expression in a subpopulation of neurons in the dorsal raphe nucleus, including neurons projecting to the basolateral amygdaloid complex. Neuroscience 157:733–748

    Article  PubMed  CAS  Google Scholar 

  • Hale MW, Johnson PL, Westerman AM, Abrams JK, Shekhar A, Lowry CA (2010) Multiple anxiogenic drugs recruit a parvalbumin-containing subpopulation of GABAergic interneurons in the basolateral amygdala. Prog Neuropsychopharmacol Biol Psychiatry 34:1285–1293

    Article  PubMed  CAS  Google Scholar 

  • Hale MW, Dady KF, Evans AK, Lowry CA (2011) Evidence for in vivo thermosensitivity of serotonergic neurons in the rat dorsal raphe nucleus and raphe pallidus nucleus implicated in thermoregulatory cooling. Exp Neurol 227:264–278

    Article  PubMed  CAS  Google Scholar 

  • Hall H, Lundkvist C, Halldin C, Farde L, Pike VW, McCarron JA, Fletcher A, Cliffe IA, Barf T, Wikstrom H, Sedvall G (1997) Autoradiographic localization of 5-HT1A receptors in the post-mortem human brain using [3H]WAY-100635 and [11C]way-100635. Brain Res 745:96–108

    Article  PubMed  CAS  Google Scholar 

  • Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195:198–213

    Article  PubMed  CAS  Google Scholar 

  • Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D, Egan MF, Weinberger DR (2002) Serotonin transporter genetic variation and the response of the human amygdala. Science 297:400–403

    Article  PubMed  CAS  Google Scholar 

  • Harmer CJ, Mackay CE, Reid CB, Cowen PJ, Goodwin GM (2006) Antidepressant drug treatment modifies the neural processing of nonconscious threat cues. Biol Psychiatry 59:816–820

    Article  PubMed  CAS  Google Scholar 

  • Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R, Biag J, Dong HW, Deisseroth K, Callaway EM, Fanselow MS, Luthi A, Anderson DJ (2010) Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468:270–276

    Article  PubMed  CAS  Google Scholar 

  • Hayes DJ, Greenshaw AJ (2011) 5-HT receptors and reward-related behaviour: a review. Neurosci Biobehav Rev 35:1419–1449

    Article  PubMed  CAS  Google Scholar 

  • Hensler JG (2006) Serotonergic modulation of the limbic system. Neurosci Biobehav Rev 30:203–214

    Article  PubMed  CAS  Google Scholar 

  • Hering H, Sheng M (2001) Dendritic spines: structure, dynamics and regulation. Nat Rev 2:880–888

    Article  CAS  Google Scholar 

  • Hikosaka O, Bromberg-Martin E, Hong S, Matsumoto M (2008) New insights on the subcortical representation of reward. Curr Opin Neurobiol 18:203–208

    Article  PubMed  CAS  Google Scholar 

  • Hiroi R, McDevitt RA, Neumaier JF (2006) Estrogen selectively increases tryptophan hydroxylase-2 mRNA expression in distinct subregions of rat midbrain raphe nucleus: association between gene expression and anxiety behavior in the open field. Biol Psychiatry 60:288–295

    Article  PubMed  CAS  Google Scholar 

  • Holmes A (2008) Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease. Neurosci Biobehav Rev 32:1293–1314

    Article  PubMed  CAS  Google Scholar 

  • Homberg JR (2012) The stress-coping (mis)match hypothesis for naturexnurture interactions. Brain Res 1432:114–121

    Article  PubMed  CAS  Google Scholar 

  • Hornung JP (2003) The human raphe nuclei and the serotonergic system. J Chem Neuroanat 26:331–343

    Article  PubMed  CAS  Google Scholar 

  • Huang XF, Han M, Storlien LH (2004) Differential expression of 5-HT(2A) and 5-HT(2C) receptor mRNAs in mice prone, or resistant, to chronic high-fat diet-induced obesity. Brain Res Mol Brain Res 127:39–47

    Article  PubMed  CAS  Google Scholar 

  • Ichise M, Vines DC, Gura T, Anderson GM, Suomi SJ, Higley JD, Innis RB (2006) Effects of early life stress on [11C]DASB positron emission tomography imaging of serotonin transporters in adolescent peer- and mother-reared rhesus monkeys. J Neurosci 26:4638–4643

    Article  PubMed  CAS  Google Scholar 

  • Imai H, Steindler DA, Kitai ST (1986) The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J Comp Neurol 243:363–380

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Li XB, Abekawa T, Kitaichi Y, Izumi T, Nakagawa S, Koyama T (2004) Selective serotonin reuptake inhibitor reduces conditioned fear through its effect in the amygdala. Eur J Pharmacol 497:311–316

    Article  PubMed  CAS  Google Scholar 

  • Jacobs BL, Fornal CA (1999) Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology 21:9S–15S

    PubMed  CAS  Google Scholar 

  • Jacobs BL, Foote SL, Bloom FE (1978) Differential projections of neurons within the dorsal raphe nucleus of the rat: a horseradish peroxidase (HRP) study. Brain Res 147:149–153

    Article  PubMed  CAS  Google Scholar 

  • Jasinska AJ, Lowry CA, Burmeister M (2012) Serotonin transporter gene, stress and raphe-raphe interactions: a molecular mechanism of depression. Trends Neurosci 35(7):395–402

    Google Scholar 

  • Jiang X, Xing G, Yang C, Verma A, Zhang L, Li H (2009) Stress impairs 5-HT2A receptor-mediated serotonergic facilitation of GABA release in juvenile rat basolateral amygdala. Neuropsychopharmacology 34:410–423

    Article  PubMed  CAS  Google Scholar 

  • Kawahara H, Yoshida M, Yokoo H, Nishi M, Tanaka M (1993) Psychological stress increases serotonin release in the rat amygdala and prefrontal cortex assessed by in vivo microdialysis. Neurosci Lett 162:81–84

    Article  PubMed  CAS  Google Scholar 

  • Kia HK, Brisorgueil MJ, Hamon M, Calas A, Verge D (1996a) Ultrastructural localization of 5-hydroxytryptamine1A receptors in the rat brain. J Neurosci Res 46:697–708

    Article  PubMed  CAS  Google Scholar 

  • Kia HK, Miquel MC, Brisorgueil MJ, Daval G, Riad M, El Mestikawy S, Hamon M, Verge D (1996b) Immunocytochemical localization of serotonin1A receptors in the rat central nervous system. J Comp Neurol 365:289–305

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick LA, Labus JS, Coveleskie K, Hammer C, Rappold G, Tillisch K, Bueller JA, Suyenobu B, Jarcho JM, McRoberts JA, Niesler B, Mayer EA (2011) The HTR3A polymorphism c. -42C > T is associated with amygdala responsiveness in patients with irritable bowel syndrome. Gastroenterology 140:1943–1951

    Article  PubMed  CAS  Google Scholar 

  • Kirby LG, Allen AR, Lucki I (1995) Regional differences in the effects of forced swimming on extracellular levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. Brain Res 682:189–196

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto K, Koyama S, Akaike N (2000) Presynaptic modulation of synaptic gamma-aminobutyric acid transmission by tandospirone in rat basolateral amygdala. Eur J Pharmacol 407:257–265

    Article  PubMed  CAS  Google Scholar 

  • Kiyasova V, Fernandez SP, Laine J, Stankovski L, Muzerelle A, Doly S, Gaspar P (2011) A genetically defined morphologically and functionally unique subset of 5-HT neurons in the mouse raphe nuclei. J Neurosci 31:2756–2768

    Article  PubMed  CAS  Google Scholar 

  • Klink R, Robichaud M, Debonnel G (2002) Gender and gonadal status modulation of dorsal raphe nucleus serotonergic neurons. Part I: effects of gender and pregnancy. Neuropharmacology 43:1119–1128

    Article  PubMed  CAS  Google Scholar 

  • Koch C, Zador A (1993) The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J Neurosci 13:413–422

    PubMed  CAS  Google Scholar 

  • Kosofsky BE, Molliver ME (1987) The serotoninergic innervation of cerebral cortex: different classes of axon terminals arise from dorsal and median raphe nuclei. Synapse 1:153–168

    Article  PubMed  CAS  Google Scholar 

  • Koyama S, Matsumoto N, Kubo C, Akaike N (2000) Presynaptic 5-HT3 receptor-mediated modulation of synaptic GABA release in the mechanically dissociated rat amygdala neurons. J Physiol 529(Pt 2):373–383

    Article  PubMed  CAS  Google Scholar 

  • Koyama S, Matsumoto N, Murakami N, Kubo C, Nabekura J, Akaike N (2002) Role of presynaptic 5-HT1A and 5-HT3 receptors in modulation of synaptic GABA transmission in dissociated rat basolateral amygdala neurons. Life Sci 72:375–387

    Article  PubMed  CAS  Google Scholar 

  • Krettek JE, Price JL (1978) Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat. J Comp Neurol 178:225–254

    Article  PubMed  CAS  Google Scholar 

  • Law AJ, Pei Q, Feldon J, Pryce CR, Harrison PJ (2009) Gene expression in the anterior cingulate cortex and amygdala of adolescent marmoset monkeys following parental separations in infancy. Int J Neuropsychopharmacol 12:761–772

    Article  PubMed  CAS  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  PubMed  CAS  Google Scholar 

  • LeDoux J (2003) The emotional brain, fear, and the amygdala. Cell Mol Neurobiol 23:727–738

    Article  PubMed  Google Scholar 

  • LeDoux J (2007) The amygdala. Curr Biol 17:R868–R874

    Article  PubMed  CAS  Google Scholar 

  • LeDoux J (2012) Rethinking the emotional brain. Neuron 73:653–676

    Article  PubMed  CAS  Google Scholar 

  • LeDoux JE, Iwata J, Cicchetti P, Reis DJ (1988) Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci 8:2517–2529

    PubMed  CAS  Google Scholar 

  • Lee BT, Ham BJ (2008) Serotonergic genes and amygdala activity in response to negative affective facial stimuli in Korean women. Genes Brain Behav 7:899–905

    Article  PubMed  Google Scholar 

  • Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18:8751–8757

    PubMed  CAS  Google Scholar 

  • Leite-Panissi CR, Ferrarese AA, Terzian AL, Menescal-de-Oliveira L (2006) Serotoninergic activation of the basolateral amygdala and modulation of tonic immobility in guinea pig. Brain Res Bull 69:356–364

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP, Waider J (2012) Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders. Neuron 76:175–191

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Muller CR, Hamer DH, Murphy DL (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–1531

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP, Zeng Y, Reif A, Gutknecht L (2003) Anxiety-related traits in mice with modified genes of the serotonergic pathway. Eur J Pharmacol 480:185–204

    Article  PubMed  CAS  Google Scholar 

  • Leuner B, Shors TJ (2012) Stress, anxiety, and dendritic spines: what are the connections? Neuroscience [Epub ahead of print]

  • Levens SM, Devinsky O, Phelps EA (2011) Role of the left amygdala and right orbital frontal cortex in emotional interference resolution facilitation in working memory. Neuropsychologia 49:3201–3212

    Article  PubMed  Google Scholar 

  • Li Q, Wichems CH, Ma L, Van de Kar LD, Garcia F, Murphy DL (2003) Brain region-specific alterations of 5-HT2A and 5-HT2C receptors in serotonin transporter knockout mice. J Neurochem 84:1256–1265

    Article  PubMed  CAS  Google Scholar 

  • Li X, Inoue T, Abekawa T, Weng S, Nakagawa S, Izumi T, Koyama T (2006) 5-HT1A receptor agonist affects fear conditioning through stimulations of the postsynaptic 5-HT1A receptors in the hippocampus and amygdala. Eur J Pharmacol 532:74–80

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Luo T, Jiang X, Wang J (2012) Anxiolytic effects of 5-HTA receptors and anxiogenic effects of 5-HTC receptors in the amygdala of mice. Neuropharmacology 62:474–484

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Bubar MJ, Lanfranco MF, Hillman GR, Cunningham KA (2007) Serotonin2C receptor localization in GABA neurons of the rat medial prefrontal cortex: implications for understanding the neurobiology of addiction. Neuroscience 146:1677–1688

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Gimenez JF, Vilaro MT, Palacios JM, Mengod G (2001) Mapping of 5-HT2A receptors and their mRNA in monkey brain: [3H]MDL100,907 autoradiography and in situ hybridization studies. J Comp Neurol 429:571–589

    Article  PubMed  CAS  Google Scholar 

  • Lowry CA, Johnson PL, Hay-Schmidt A, Mikkelsen J, Shekhar A (2005) Modulation of anxiety circuits by serotonergic systems. Stress 8:233–246

    Article  PubMed  CAS  Google Scholar 

  • Lowry CA, Hale MW, Evans AK, Heerkens J, Staub DR, Gasser PJ, Shekhar A (2008) Serotonergic systems, anxiety, and affective disorder: focus on the dorsomedial part of the dorsal raphe nucleus. Ann N Y Acad Sci 1148:86–94

    Article  PubMed  Google Scholar 

  • Luscher C, Slesinger PA (2010) Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev 11:301–315

    Google Scholar 

  • Ma QP, Yin GF, Ai MK, Han JS (1991) Serotonergic projections from the nucleus raphe dorsalis to the amygdala in the rat. Neurosci Lett 134:21–24

    Article  PubMed  CAS  Google Scholar 

  • Macedo CE, Martinez RC, de Souza Silva MA, Brandao ML (2005) Increases in extracellular levels of 5-HT and dopamine in the basolateral, but not in the central, nucleus of amygdala induced by aversive stimulation of the inferior colliculus. Eur J Neurosci 21:1131–1138

    Article  PubMed  Google Scholar 

  • Magalhaes AC, Holmes KD, Dale LB, Comps-Agrar L, Lee D, Yadav PN, Drysdale L, Poulter MO, Roth BL, Pin JP, Anisman H, Ferguson SS (2010) CRF receptor 1 regulates anxiety behavior via sensitization of 5-HT2 receptor signaling. Nat Neurosci 13:622–629

    Article  PubMed  CAS  Google Scholar 

  • Mahan AL, Ressler KJ (2012) Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci 35:24–35

    Article  PubMed  CAS  Google Scholar 

  • Maier SF, Watkins LR (2005) Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci Biobehav Rev 29:829–841

    Article  PubMed  CAS  Google Scholar 

  • Mamounas LA, Molliver ME (1988) Evidence for dual serotonergic projections to neocortex: axons from the dorsal and median raphe nuclei are differentially vulnerable to the neurotoxin p-chloroamphetamine (PCA). Exp Neurol 102:23–36

    Article  PubMed  CAS  Google Scholar 

  • Man MS, Mikheenko Y, Braesicke K, Cockcroft G, Roberts AC (2012) Serotonin at the level of the amygdala and orbitofrontal cortex modulates distinct aspects of positive emotion in primates. Int J Neuropsychopharmacol 15:1–15

    Google Scholar 

  • Marazziti D, Baroni S, Pirone A, Giannaccini G, Betti L, Schmid L, Vatteroni E, Palego L, Borsini F, Bordi F, Piano I, Gargini C, Castagna M, Catena-Dell’osso M, Lucacchini A (2012) Distribution of serotonin receptor of type 6 (5-HT(6)) in human brain post-mortem. a pharmacology, autoradiography and immunohistochemistry study. Neurochem Res 37(5):920–927

    Google Scholar 

  • Maren S, Quirk GJ (2004) Neuronal signalling of fear memory. Nat Rev 5:844–852

    Article  CAS  Google Scholar 

  • Marion S, Weiner DM, Caron MG (2004) RNA editing induces variation in desensitization and trafficking of 5-hydroxytryptamine 2c receptor isoforms. J Biol Chem 279:2945–2954

    Article  PubMed  CAS  Google Scholar 

  • Mascagni F, McDonald AJ (2007) A novel subpopulation of 5-HT type 3A receptor subunit immunoreactive interneurons in the rat basolateral amygdala. Neuroscience 144:1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Mascagni F, Muly EC, Rainnie DG, McDonald AJ (2009) Immunohistochemical characterization of parvalbumin-containing interneurons in the monkey basolateral amygdala. Neuroscience 158:1541–1550

    Article  PubMed  CAS  Google Scholar 

  • McDonald AJ (1982a) Cytoarchitecture of the central amygdaloid nucleus of the rat. J Comp Neurol 208:401–418

    Article  PubMed  CAS  Google Scholar 

  • McDonald AJ (1982b) Neurons of the lateral and basolateral amygdaloid nuclei: a Golgi study in the rat. J Comp Neurol 212:293–312

    Article  PubMed  CAS  Google Scholar 

  • McDonald AJ (1989) Coexistence of somatostatin with neuropeptide Y, but not with cholecystokinin or vasoactive intestinal peptide, in neurons of the rat amygdala. Brain Res 500:37–45

    Article  PubMed  CAS  Google Scholar 

  • McDonald AJ (1992) Cell types and intrinsic connections of the amvgdala. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 67–96

    Google Scholar 

  • McDonald AJ (1997) Calbindin-D28 k immunoreactivity in the rat amygdala. J Comp Neurol 383:231–244

    Article  PubMed  CAS  Google Scholar 

  • McDonald AJ (1998) Cortical pathways to the mammalian amygdala. Prog Neurobiol 55:257–332

    Article  PubMed  CAS  Google Scholar 

  • McDonald AJ, Betette RL (2001) Parvalbumin-containing neurons in the rat basolateral amygdala: morphology and co-localization of Calbindin-D(28 k). Neuroscience 102:413–425

    Article  PubMed  CAS  Google Scholar 

  • McDonald AJ, Mascagni F (2001) Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience 105:681–693

    Article  PubMed  CAS  Google Scholar 

  • McDonald AJ, Mascagni F (2007) Neuronal localization of 5-HT type 2A receptor immunoreactivity in the rat basolateral amygdala. Neuroscience 146:306–320

    Article  PubMed  CAS  Google Scholar 

  • McDonald AJ, Pearson JC (1989) Coexistence of GABA and peptide immunoreactivity in non-pyramidal neurons of the basolateral amygdala. Neurosci Lett 100:53–58

    Article  PubMed  CAS  Google Scholar 

  • McDonald AJ, Mascagni F, Augustine JR (1995) Neuropeptide Y and somatostatin-like immunoreactivity in neurons of the monkey amygdala. Neuroscience 66:959–982

    Article  PubMed  CAS  Google Scholar 

  • McDonald AJ, Shammah-Lagnado SJ, Shi C, Davis M (1999) Cortical afferents to the extended amygdala. Ann N Y Acad Sci 877:309–338

    Article  PubMed  CAS  Google Scholar 

  • McEuen JG, Beck SG, Bale TL (2008) Failure to mount adaptive responses to stress results in dysregulation and cell death in the midbrain raphe. J Neurosci 28:8169–8177

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS, Eiland L, Hunter RG, Miller MM (2012) Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology 62:3–12

    Article  PubMed  CAS  Google Scholar 

  • Medina L, Legaz I, Gonzalez G, De Castro F, Rubenstein JL, Puelles L (2004) Expression of Dbx1, Neurogenin 2, Semaphorin 5A, Cadherin 8, and Emx1 distinguish ventral and lateral pallial histogenetic divisions in the developing mouse claustroamygdaloid complex. J Comp Neurol 474:504–523

    Article  PubMed  Google Scholar 

  • Menard J, Treit D (1999) Effects of centrally administered anxiolytic compounds in animal models of anxiety. Neurosci Biobehav Rev 23:591–613

    Article  PubMed  CAS  Google Scholar 

  • Menetrey D, De Pommery J (1991) Origins of Spinal Ascending Pathways that Reach Central Areas Involved in Visceroception and Visceronociception in the Rat. Eur J Neurosci 3:249–259

    Article  PubMed  Google Scholar 

  • Millhouse OE (1986) The intercalated cells of the amygdala. J Comp Neurol 247:246–271

    Article  PubMed  CAS  Google Scholar 

  • Millhouse OE, DeOlmos J (1983) Neuronal configurations in lateral and basolateral amygdala. Neuroscience 10:1269–1300

    Article  PubMed  CAS  Google Scholar 

  • Miner LA, Backstrom JR, Sanders-Bush E, Sesack SR (2003) Ultrastructural localization of serotonin2A receptors in the middle layers of the rat prelimbic prefrontal cortex. Neuroscience 116:107–117

    Article  PubMed  CAS  Google Scholar 

  • Miquel MC, Doucet E, Boni C, El Mestikawy S, Matthiessen L, Daval G, Verge D, Hamon M (1991) Central serotonin 1A receptors: respective distributions of encoding mRNA, receptor protein and binding sites by in situ hybridization histochemistry, radioimmunohistochemistry and autoradiographic mapping in the rat brain. Neurochem Int 19:453–465

    Article  CAS  Google Scholar 

  • Miquel MC, Emerit MB, Nosjean A, Simon A, Rumajogee P, Brisorgueil MJ, Doucet E, Hamon M, Verge D (2002) Differential subcellular localization of the 5-HT3-As receptor subunit in the rat central nervous system. Eur J Neurosci 15:449–457

    Article  PubMed  Google Scholar 

  • Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S (2005) Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci U S A 102:9371–9376

    Article  PubMed  CAS  Google Scholar 

  • Mitra R, Adamec R, Sapolsky R (2009) Resilience against predator stress and dendritic morphology of amygdala neurons. Behav Brain Res 205:535–543

    Article  PubMed  Google Scholar 

  • Mitsushima D, Yamada K, Takase K, Funabashi T, Kimura F (2006) Sex differences in the basolateral amygdala: the extracellular levels of serotonin and dopamine, and their responses to restraint stress in rats. Eur J Neurosci 24:3245–3254

    Article  PubMed  Google Scholar 

  • Mo B, Feng N, Renner K, Forster G (2008) Restraint stress increases serotonin release in the central nucleus of the amygdala via activation of corticotropin-releasing factor receptors. Brain Res Bull 76:493–498

    Article  PubMed  CAS  Google Scholar 

  • Moga MM, Gray TS (1985) Evidence for corticotropin-releasing factor, neurotensin, and somatostatin in the neural pathway from the central nucleus of the amygdala to the parabrachial nucleus. J Comp Neurol 241:275–284

    Article  PubMed  CAS  Google Scholar 

  • Morales M, Bloom FE (1997) The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J Neurosci 17:3157–3167

    PubMed  CAS  Google Scholar 

  • Morales M, Battenberg E, de Lecea L, Sanna PP, Bloom FE (1996) Cellular and subcellular immunolocalization of the type 3 serotonin receptor in the rat central nervous system. Brain Res Mol Brain Res 36:251–260

    Article  PubMed  CAS  Google Scholar 

  • Morales M, Wang SD, Diaz-Ruiz O, Jho DH (2004) Cannabinoid CB1 receptor and serotonin 3 receptor subunit A (5-HT3A) are co-expressed in GABA neurons in the rat telencephalon. J Comp Neurol 468:205–216

    Article  PubMed  CAS  Google Scholar 

  • Morrison KE, Cooper MA (2012) A role for 5-HT1A receptors in the basolateral amygdala in the development of conditioned defeat in Syrian hamsters. Pharmacol Biochem Behav 100:592–600

    Article  PubMed  CAS  Google Scholar 

  • Morrison KE, Swallows CL, Cooper MA (2011) Effects of dominance status on conditioned defeat and expression of 5-HT1A and 5-HT2A receptors. Physiol Behav 104:283–290

    Article  PubMed  CAS  Google Scholar 

  • Moya PR, Fox MA, Jensen CL, Laporte JL, French HT, Wendland JR, Murphy DL (2011) Altered 5-HT2C receptor agonist-induced responses and 5-HT2C receptor RNA editing in the amygdala of serotonin transporter knockout mice. BMC Pharmacol 11:3

    Article  PubMed  CAS  Google Scholar 

  • Mozhui K, Hamre KM, Holmes A, Lu L, Williams RW (2007) Genetic and structural analysis of the basolateral amygdala complex in BXD recombinant inbred mice. Behav Genet 37:223–243

    Article  PubMed  Google Scholar 

  • Mozhui K, Karlsson RM, Kash TL, Ihne J, Norcross M, Patel S, Farrell MR, Hill EE, Graybeal C, Martin KP, Camp M, Fitzgerald PJ, Ciobanu DC, Sprengel R, Mishina M, Wellman CL, Winder DG, Williams RW, Holmes A (2010) Strain differences in stress responsivity are associated with divergent amygdala gene expression and glutamate-mediated neuronal excitability. J Neurosci 30:5357–5367

    Article  PubMed  CAS  Google Scholar 

  • Muller MB, Keck ME (2002) Genetically engineered mice for studies of stress-related clinical conditions. J Psychiatr Res 36:53–76

    Article  PubMed  Google Scholar 

  • Muller JF, Mascagni F, McDonald AJ (2003) Synaptic connections of distinct interneuronal subpopulations in the rat basolateral amygdalar nucleus. J Comp Neurol 456:217–236

    Article  PubMed  CAS  Google Scholar 

  • Muller JF, Mascagni F, McDonald AJ (2005) Coupled networks of parvalbumin-immunoreactive interneurons in the rat basolateral amygdala. J Neurosci 25:7366–7376

    Article  PubMed  CAS  Google Scholar 

  • Muller JF, Mascagni F, McDonald AJ (2006) Pyramidal cells of the rat basolateral amygdala: synaptology and innervation by parvalbumin-immunoreactive interneurons. J Comp Neurol 494:635–650

    Article  PubMed  Google Scholar 

  • Muller JF, Mascagni F, McDonald AJ (2007a) Postsynaptic targets of somatostatin-containing interneurons in the rat basolateral amygdala. J Comp Neurol 500:513–529

    Article  PubMed  CAS  Google Scholar 

  • Muller JF, Mascagni F, McDonald AJ (2007b) Serotonin-immunoreactive axon terminals innervate pyramidal cells and interneurons in the rat basolateral amygdala. J Comp Neurol 505:314–335

    Article  PubMed  Google Scholar 

  • Murray EA, Izquierdo A (2007) Orbitofrontal cortex and amygdala contributions to affect and action in primates. Ann N Y Acad Sci 1121:273–296

    Article  PubMed  Google Scholar 

  • Murrough JW, Czermak C, Henry S, Nabulsi N, Gallezot JD, Gueorguieva R, Planeta-Wilson B, Krystal JH, Neumaier JF, Huang Y, Ding YS, Carson RE, Neumeister A (2011a) The effect of early trauma exposure on serotonin type 1B receptor expression revealed by reduced selective radioligand binding. Arch Gen Psychiatry 68:892–900

    Article  PubMed  Google Scholar 

  • Murrough JW, Huang Y, Hu J, Henry S, Williams W, Gallezot JD, Bailey CR, Krystal JH, Carson RE, Neumeister A (2011b) Reduced amygdala serotonin transporter binding in posttraumatic stress disorder. Biol Psychiatry 70:1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Narayanan V, Heiming RS, Jansen F, Lesting J, Sachser N, Pape HC, Seidenbecher T (2011) Social defeat: impact on fear extinction and amygdala-prefrontal cortical theta synchrony in 5-HTT deficient mice. PLoS ONE 6:e22600

    Article  PubMed  CAS  Google Scholar 

  • Neumaier JF, Sexton TJ, Yracheta J, Diaz AM, Brownfield M (2001) Localization of 5-HT(7) receptors in rat brain by immunocytochemistry, in situ hybridization, and agonist stimulated cFos expression. J Chem Neuroanat 21:63–73

    Article  PubMed  CAS  Google Scholar 

  • Nietzer SL, Bonn M, Jansen F, Heiming RS, Lewejohann L, Sachser N, Asan ES, Lesch KP, Schmitt AG (2011) Serotonin transporter knockout and repeated social defeat stress: impact on neuronal morphology and plasticity in limbic brain areas. Behav Brain Res 220:42–54

    Article  PubMed  CAS  Google Scholar 

  • Norbury R, Taylor MJ, Selvaraj S, Murphy SE, Harmer CJ, Cowen PJ (2009) Short-term antidepressant treatment modulates amygdala response to happy faces. Psychopharmacology 206:197–204

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke H, Fudge JL (2006) Distribution of serotonin transporter labeled fibers in amygdaloid subregions: implications for mood disorders. Biol Psychiatry 60:479–490

    Article  PubMed  CAS  Google Scholar 

  • Ottersen OP (1980) Afferent connections to the amygdaloid complex of the rat and cat: II. Afferents from the hypothalamus and the basal telencephalon. J Comp Neurol 194:267–289

    Article  PubMed  CAS  Google Scholar 

  • Ottersen OP (1981) Afferent connections to the amygdaloid complex of the rat with some observations in the cat. III. Afferents from the lower brain stem. J Comp Neurol 202:335–356

    Article  PubMed  CAS  Google Scholar 

  • Ottersen OP, Ben-Ari Y (1979) Afferent connections to the amygdaloid complex of the rat and cat. I. Projections from the thalamus. J Comp Neurol 187:401–424

    Article  PubMed  CAS  Google Scholar 

  • Palomares-Castillo E, Hernandez-Perez OR, Perez-Carrera D, Crespo-Ramirez M, Fuxe K, Perez de la Mora M (2012) The intercalated paracapsular islands as a module for integration of signals regulating anxiety in the amygdala. Brain Res 1476:211–234

    Google Scholar 

  • Pape HC, Pare D (2010) Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 90:419–463

    Article  PubMed  CAS  Google Scholar 

  • Pasqualetti M, Ori M, Castagna M, Marazziti D, Cassano GB, Nardi I (1999) Distribution and cellular localization of the serotonin type 2C receptor messenger RNA in human brain. Neuroscience 92:601–611

    Article  PubMed  CAS  Google Scholar 

  • Paton JJ, Belova MA, Morrison SE, Salzman CD (2006) The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439:865–870

    Article  PubMed  CAS  Google Scholar 

  • Peddie CJ, Davies HA, Colyer FM, Stewart MG, Rodriguez JJ (2008) Colocalisation of serotonin2A receptors with the glutamate receptor subunits NR1 and GluR2 in the dentate gyrus: an ultrastructural study of a modulatory role. Exp Neurol 211:561–573

    Article  PubMed  CAS  Google Scholar 

  • Petrov T, Krukoff TL, Jhamandas JH (1994) Chemically defined collateral projections from the pons to the central nucleus of the amygdala and hypothalamic paraventricular nucleus in the rat. Cell Tissue Res 277:289–295

    Article  PubMed  CAS  Google Scholar 

  • Petrovich GD, Swanson LW (1997) Projections from the lateral part of the central amygdalar nucleus to the postulated fear conditioning circuit. Brain Res 763:247–254

    Article  PubMed  CAS  Google Scholar 

  • Phelps EA, LeDoux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48:175–187

    Article  PubMed  CAS  Google Scholar 

  • Pitkänen A, Kemppainen S (2002) Comparison of the distribution of calcium-binding proteins and intrinsic connectivity in the lateral nucleus of the rat, monkey, and human amygdala. Pharmacol Biochem Behav 71:369–377

    Article  PubMed  Google Scholar 

  • Pitkänen A, Savander V, LeDoux JE (1997) Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci 20:517–523

    Article  PubMed  Google Scholar 

  • Pitkänen A, Tuunanen J, Kalviainen R, Partanen K, Salmenpera T (1998) Amygdala damage in experimental and human temporal lobe epilepsy. Epilepsy Res 32:233–253

    Article  PubMed  Google Scholar 

  • Plappert CF, Pilz PK (2002) Difference in anxiety and sensitization of the acoustic startle response between the two inbred mouse strains BALB/cAN and DBA/2 N. Genes Brain Behav 1:178–186

    Article  PubMed  CAS  Google Scholar 

  • Polter AM, Li X (2010) 5-HT1A receptor-regulated signal transduction pathways in brain. Cell Signal 22:1406–1412

    Article  PubMed  CAS  Google Scholar 

  • Pompeiano M, Palacios JM, Mengod G (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Brain Res Mol Brain Res 23:163–178

    Article  PubMed  CAS  Google Scholar 

  • Price JL (2003) Comparative aspects of amygdala connectivity. Ann N Y Acad Sci 985:50–58

    Article  PubMed  Google Scholar 

  • Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein JL (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424:409–438

    Article  PubMed  CAS  Google Scholar 

  • Puig MV, Gulledge AT (2011) Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol Neurobiol 44:449–464

    Article  PubMed  CAS  Google Scholar 

  • Rainnie DG (1999) Serotonergic modulation of neurotransmission in the rat basolateral amygdala. J Neurophysiol 82:69–85

    PubMed  CAS  Google Scholar 

  • Rainnie DG (2003) Inhibitory and excitatory circuitries in amygdala nuclei: a synopsis of session II. Ann N Y Acad Sci 985:59–66

    Article  PubMed  Google Scholar 

  • Rainnie DG, Mania I, Mascagni F, McDonald AJ (2006) Physiological and morphological characterization of parvalbumin-containing interneurons of the rat basolateral amygdala. J Comp Neurol 498:142–161

    Article  PubMed  Google Scholar 

  • Ravinder S, Pillai AG, Chattarji S (2011) Cellular correlates of enhanced anxiety caused by acute treatment with the selective serotonin reuptake inhibitor fluoxetine in rats. Front Behav Neurosci 5:88

    Article  PubMed  CAS  Google Scholar 

  • Rea K, Lang Y, Finn DP (2009) Alterations in extracellular levels of gamma-aminobutyric acid in the rat basolateral amygdala and periaqueductal gray during conditioned fear, persistent pain and fear-conditioned analgesia. J Pain 10:1088–1098

    Article  PubMed  CAS  Google Scholar 

  • Real MA, Heredia R, Labrador Mdel C, Davila JC, Guirado S (2009) Expression of somatostatin and neuropeptide Y in the embryonic, postnatal, and adult mouse amygdalar complex. J Comp Neurol 513:335–348

    Article  PubMed  CAS  Google Scholar 

  • Reyes BA, Drolet G, Van Bockstaele EJ (2008) Dynorphin and stress-related peptides in rat locus coeruleus: contribution of amygdalar efferents. J Comp Neurol 508:663–675

    Article  PubMed  CAS  Google Scholar 

  • Reyes BA, Carvalho AF, Vakharia K, Van Bockstaele EJ (2011) Amygdalar peptidergic circuits regulating noradrenergic locus coeruleus neurons: linking limbic and arousal centers. Exp Neurol 230:96–105

    Article  PubMed  CAS  Google Scholar 

  • Reznikov LR, Reagan LP, Fadel JR (2008) Activation of phenotypically distinct neuronal subpopulations in the anterior subdivision of the rat basolateral amygdala following acute and repeated stress. J Comp Neurol 508:458–472

    Article  PubMed  Google Scholar 

  • Riad M, Garcia S, Watkins KC, Jodoin N, Doucet E, Langlois X, el Mestikawy S, Hamon M, Descarries L (2000) Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol 417:181–194

    Article  PubMed  CAS  Google Scholar 

  • Rinaman L, Schwartz G (2004) Anterograde transneuronal viral tracing of central viscerosensory pathways in rats. J Neurosci 24:2782–2786

    Article  PubMed  CAS  Google Scholar 

  • Roche M, Commons KG, Peoples A, Valentino RJ (2003) Circuitry underlying regulation of the serotonergic system by swim stress. J Neurosci 23:970–977

    Google Scholar 

  • Rodriguez JJ, Garcia DR, Pickel VM (1999) Subcellular distribution of 5-hydroxytryptamine2A and N-methyl-d-aspartate receptors within single neurons in rat motor and limbic striatum. J Comp Neurol 413:219–231

    Article  PubMed  CAS  Google Scholar 

  • Roozendaal B, McEwen BS, Chattarji S (2009) Stress, memory and the amygdala. Nat Rev 10:423–433

    CAS  Google Scholar 

  • Rose C, Schwegler H, Hanke J, Rohl FW, Yilmazer-Hanke DM (2006) Differential effects of embryo transfer and maternal factors on anxiety-related behavior and numbers of neuropeptide Y (NPY) and parvalbumin (PARV) containing neurons in the amygdala of inbred C3H/HeN and DBA/2 J mice. Behav Brain Res 173:163–168

    Article  PubMed  CAS  Google Scholar 

  • Roychowdhury S, Haas H, Anderson EG (1994) 5-HT1A and 5-HT4 receptor colocalization on hippocampal pyramidal cells. Neuropharmacology 33:551–557

    Article  PubMed  CAS  Google Scholar 

  • Rueter LE, Jacobs BL (1996) A microdialysis examination of serotonin release in the rat forebrain induced by behavioral/environmental manipulations. Brain Res 739:57–69

    Article  PubMed  CAS  Google Scholar 

  • Sadikot AF, Parent A (1990) The monoaminergic innervation of the amygdala in the squirrel monkey: an immunohistochemical study. Neuroscience 36:431–447

    Article  PubMed  CAS  Google Scholar 

  • Sah P, Faber ES, Lopez De Armentia M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83:803–834

    PubMed  CAS  Google Scholar 

  • Saha S, Gamboa-Esteves FO, Batten TF (2010) Differential distribution of 5-HT 1A and 5-HT 1B-like immunoreactivities in rat central nucleus of the amygdala neurones projecting to the caudal dorsomedial medulla oblongata. Brain Res 1330:20–30

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Crochet S (2001) Differentiation of presumed serotonergic dorsal raphe neurons in relation to behavior and wake-sleep states. Neuroscience 104:1141–1155

    Article  PubMed  CAS  Google Scholar 

  • Saper CB, Loewy AD (1980) Efferent connections of the parabrachial nucleus in the rat. Brain Res 197:291–317

    Article  PubMed  CAS  Google Scholar 

  • Sartori SB, Hauschild M, Bunck M, Gaburro S, Landgraf R, Singewald N (2011) Enhanced fear expression in a psychopathological mouse model of trait anxiety: pharmacological interventions. PLoS ONE 6:e16849

    Article  PubMed  CAS  Google Scholar 

  • Schiller L, Jahkel M, Kretzschmar M, Brust P, Oehler J (2003) Autoradiographic analyses of 5-HT1A and 5-HT2A receptors after social isolation in mice. Brain Res 980:169–178

    Article  PubMed  CAS  Google Scholar 

  • Scholl JL, Vuong SM, Forster GL (2010) Chronic amphetamine treatment enhances corticotropin-releasing factor-induced serotonin release in the amygdala. Eur J Pharmacol 644:80–87

    Article  PubMed  CAS  Google Scholar 

  • Segal M (2005) Dendritic spines and long-term plasticity. Nat Rev 6:277–284

    CAS  Google Scholar 

  • Shekhar A, Sajdyk TJ, Gehlert DR, Rainnie DG (2003) The amygdala, panic disorder, and cardiovascular responses. Ann N Y Acad Sci 985:308–325

    Article  PubMed  CAS  Google Scholar 

  • Shin LM, Liberzon I (2010) The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 35:169–191

    Article  PubMed  Google Scholar 

  • Shors TJ, Mathew PR (1998) NMDA receptor antagonism in the lateral/basolateral but not central nucleus of the amygdala prevents the induction of facilitated learning in response to stress. Learn Mem 5:220–230

    PubMed  CAS  Google Scholar 

  • Sierra-Mercado D, Padilla-Coreano N, Quirk GJ (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 36:529–538

    Article  PubMed  Google Scholar 

  • Simon D, Craig KD, Miltner WH, Rainville P (2006) Brain responses to dynamic facial expressions of pain. Pain 126:309–318

    Article  PubMed  Google Scholar 

  • Smith HR, Porrino LJ (2008) The comparative distributions of the monoamine transporters in the rodent, monkey, and human amygdala. Brain Struct Funct 213:73–91

    Article  PubMed  CAS  Google Scholar 

  • Sorvari H, Soininen H, Paljarvi L, Karkola K, Pitkänen A (1995) Distribution of parvalbumin-immunoreactive cells and fibers in the human amygdaloid complex. J Comp Neurol 360:185–212

    Article  PubMed  CAS  Google Scholar 

  • Sorvari H, Soininen H, Pitkänen A (1996a) Calbindin-D28 K-immunoreactive cells and fibres in the human amygdaloid complex. Neuroscience 75:421–443

    Article  PubMed  CAS  Google Scholar 

  • Sorvari H, Soininen H, Pitkänen A (1996b) Calretinin-immunoreactive cells and fibers in the human amygdaloid complex. J Comp Neurol 369:188–208

    Article  PubMed  CAS  Google Scholar 

  • Spannuth BM, Hale MW, Evans AK, Lukkes JL, Campeau S, Lowry CA (2011) Investigation of a central nucleus of the amygdala/dorsal raphe nucleus serotonergic circuit implicated in fear-potentiated startle. Neuroscience 179:104–119

    Article  PubMed  CAS  Google Scholar 

  • Stanford IM, Kantaria MA, Chahal HS, Loucif KC, Wilson CL (2005) 5-Hydroxytryptamine induced excitation and inhibition in the subthalamic nucleus: action at 5-HT(2C), 5-HT(4) and 5-HT(1A) receptors. Neuropharmacology 49:1228–1234

    Article  PubMed  CAS  Google Scholar 

  • Staub DR, Spiga F, Lowry CA (2005) Urocortin 2 increases c-Fos expression in topographically organized subpopulations of serotonergic neurons in the rat dorsal raphe nucleus. Brain Res 1044:176–189

    Article  PubMed  CAS  Google Scholar 

  • Staub DR, Evans AK, Lowry CA (2006) Evidence supporting a role for corticotropin-releasing factor type 2 (CRF2) receptors in the regulation of subpopulations of serotonergic neurons. Brain Res 1070:77–89

    Article  PubMed  CAS  Google Scholar 

  • Steinbusch HW, Nieuwenhuys R (1981) Localization of serotonin-like immunoreactivity in the central nervous system and pituitary of the rat, with special references to the innervation of the hypothalamus. Adv Exp Med Biol 133:7–35

    Article  PubMed  CAS  Google Scholar 

  • Stiedl O, Palve M, Radulovic J, Birkenfeld K, Spiess J (1999) Differential impairment of auditory and contextual fear conditioning by protein synthesis inhibition in C57BL/6 N mice. Behav Neurosci 113:496–506

    Article  PubMed  CAS  Google Scholar 

  • Stinnett GS, Seasholtz AF (2010) Stress and emotionality. In: Koob GF, Le Moal M, Tompson RF (eds) Encyclopedia of behavioral neuroscience: P-V & index. Academic Press, London, p 556

    Google Scholar 

  • Stockmeier CA (2003) Involvement of serotonin in depression: evidence from postmortem and imaging studies of serotonin receptors and the serotonin transporter. J Psychiatr Res 37:357–373

    Article  PubMed  Google Scholar 

  • Storvik M, Tiihonen J, Haukijarvi T, Tupala E (2007) Amygdala serotonin transporters in alcoholics measured by whole hemisphere autoradiography. Synapse 61:629–636

    Article  PubMed  CAS  Google Scholar 

  • Stutzmann GE, LeDoux JE (1999) GABAergic antagonists block the inhibitory effects of serotonin in the lateral amygdala: a mechanism for modulation of sensory inputs related to fear conditioning. J Neurosci 19:RC8

    PubMed  CAS  Google Scholar 

  • Stutzmann GE, McEwen BS, LeDoux JE (1998) Serotonin modulation of sensory inputs to the lateral amygdala: dependency on corticosterone. J Neurosci 18:9529–9538

    PubMed  CAS  Google Scholar 

  • Sur C, Betz H, Schloss P (1996) Immunocytochemical detection of the serotonin transporter in rat brain. Neuroscience 73:217–231

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci 21:323–331

    Article  PubMed  CAS  Google Scholar 

  • Thomas DR (2006) 5-ht5A receptors as a therapeutic target. Pharmacol Ther 111:707–714

    Article  PubMed  CAS  Google Scholar 

  • Toyoda H, Li XY, Wu LJ, Zhao MG, Descalzi G, Chen T, Koga K, Zhuo M (2011) Interplay of amygdala and cingulate plasticity in emotional fear. Neural Plast 2011:813749

    Article  PubMed  Google Scholar 

  • Truitt WA, Johnson PL, Dietrich AD, Fitz SD, Shekhar A (2009) Anxiety-like behavior is modulated by a discrete subpopulation of interneurons in the basolateral amygdala. Neuroscience 160:284–294

    Article  PubMed  CAS  Google Scholar 

  • Turner BH, Herkenham M (1991) Thalamoamygdaloid projections in the rat: a test of the amygdala’s role in sensory processing. J Comp Neurol 313:295–325

    Article  PubMed  CAS  Google Scholar 

  • Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev 10:397–409

    Article  CAS  Google Scholar 

  • Valentino RJ, Lucki I, Van Bockstaele E (2010) Corticotropin-releasing factor in the dorsal raphe nucleus: linking stress coping and addiction. Brain Res 1314:29–37

    Article  PubMed  CAS  Google Scholar 

  • van der Veen FM, Evers EA, Deutz NE, Schmitt JA (2007) Effects of acute tryptophan depletion on mood and facial emotion perception related brain activation and performance in healthy women with and without a family history of depression. Neuropsychopharmacology 32:216–224

    Article  PubMed  CAS  Google Scholar 

  • van Marle HJ, Hermans EJ, Qin S, Fernandez G (2009) From specificity to sensitivity: how acute stress affects amygdala processing of biologically salient stimuli. Biol Psychiatry 66:649–655

    Article  PubMed  Google Scholar 

  • Varnas K, Halldin C, Hall H (2004) Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Hum Brain Mapp 22:246–260

    Article  PubMed  Google Scholar 

  • Varnas K, Hurd YL, Hall H (2005) Regional expression of 5-HT1B receptor mRNA in the human brain. Synapse 56:21–28

    Article  PubMed  CAS  Google Scholar 

  • Veening JG (1978) Subcortical afferents of the amygdaloid complex in the rat: an HRP study. Neurosci Lett 8:197–202

    Article  PubMed  CAS  Google Scholar 

  • Veening JG, Swanson LW, Sawchenko PE (1984) The organization of projections from the central nucleus of the amygdala to brainstem sites involved in central autonomic regulation: a combined retrograde transport-immunohistochemical study. Brain Res 303:337–357

    Article  PubMed  CAS  Google Scholar 

  • Vertes RP, Fortin WJ, Crane AM (1999) Projections of the median raphe nucleus in the rat. J Comp Neurol 407:555–582

    Article  PubMed  CAS  Google Scholar 

  • Vicente MA, Zangrossi H (2011) Serotonin-2C receptors in the basolateral nucleus of the amygdala mediate the anxiogenic effect of acute imipramine and fluoxetine administration. Int J Neuropsychopharmacol 14:1–12

    Google Scholar 

  • Vizueta N, Patrick CJ, Jiang Y, Thomas KM, He S (2012) Dispositional fear, negative affectivity, and neuroimaging response to visually suppressed emotional faces. NeuroImage 59:761–771

    Article  PubMed  Google Scholar 

  • Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22:6810–6818

    PubMed  CAS  Google Scholar 

  • Vyas A, Pillai AG, Chattarji S (2004) Recovery after chronic stress fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior. Neuroscience 128:667–673

    Article  PubMed  CAS  Google Scholar 

  • Vyas A, Jadhav S, Chattarji S (2006) Prolonged behavioral stress enhances synaptic connectivity in the basolateral amygdala. Neuroscience 143:387–393

    Article  PubMed  CAS  Google Scholar 

  • Waider J, Proft F, Langlhofer G, Asan E, Lesch KP, Gutknecht L (2012) GABA concentration and GABAergic neuron populations in limbic areas are differentially altered by brain serotonin deficiency in Tph2 knockout mice. Histochem Cell Biol 139(2):267–281

    Google Scholar 

  • Walther DJ, Bader M (2003) A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 66:1673–1680

    Article  PubMed  CAS  Google Scholar 

  • Wang DV, Wang F, Liu J, Zhang L, Wang Z, Lin L (2011) Neurons in the amygdala with response-selectivity for anxiety in two ethologically based tests. PLoS ONE 6:e18739

    Article  PubMed  CAS  Google Scholar 

  • Waselus M, Valentino RJ, Van Bockstaele EJ (2011) Collateralized dorsal raphe nucleus projections: a mechanism for the integration of diverse functions during stress. J Chem Neuroanat 41:266–280

    Article  PubMed  Google Scholar 

  • Weber M, Schmitt A, Wischmeyer E, Doring F (2008) Excitability of pontine startle processing neurones is regulated by the two-pore-domain K + channel TASK-3 coupled to 5-HT2C receptors. Eur J Neurosci 28:931–940

    Article  PubMed  Google Scholar 

  • Wellman CL, Izquierdo A, Garrett JE, Martin KP, Carroll J, Millstein R, Lesch KP, Murphy DL, Holmes A (2007) Impaired stress-coping and fear extinction and abnormal corticolimbic morphology in serotonin transporter knock-out mice. J Neurosci 27:684–691

    Article  PubMed  CAS  Google Scholar 

  • Werry TD, Loiacono R, Sexton PM, Christopoulos A (2008) RNA editing of the serotonin 5HT2C receptor and its effects on cell signalling, pharmacology and brain function. Pharmacol Ther 119:7–23

    Article  PubMed  CAS  Google Scholar 

  • Wills TA, Knapp DJ, Overstreet DH, Breese GR (2010) Interactions of stress and CRF in ethanol-withdrawal induced anxiety in adolescent and adult rats. Alcohol Clin Exp Res 34:1603–1612

    Article  PubMed  Google Scholar 

  • Wilson MA, Molliver ME (1991) The organization of serotonergic projections to cerebral cortex in primates: retrograde transport studies. Neuroscience 44:555–570

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Fujimiya M, Shirai Y, Nakashita M, Oyasu M, Saito N (1998) Immunohistochemical localization of serotonin transporter in normal and colchicine treated rat brain. Neurosci Res 32:305–312

    Article  PubMed  CAS  Google Scholar 

  • Yilmazer-Hanke DM, Faber-Zuschratter H, Linke R, Schwegler H (2002) Contribution of amygdala neurons containing peptides and calcium-binding proteins to fear-potentiated startle and exploration-related anxiety in inbred Roman high- and low-avoidance rats. Eur J Neurosci 15:1206–1218

    Article  PubMed  Google Scholar 

  • Yuen EY, Jiang Q, Chen P, Feng J, Yan Z (2008) Activation of 5-HT2A/C receptors counteracts 5-HT1A regulation of n-methyl-d-aspartate receptor channels in pyramidal neurons of prefrontal cortex. J Biol Chem 283:17194–17204

    Article  PubMed  CAS  Google Scholar 

  • Zangrossi H Jr, Viana MB, Graeff FG (1999) Anxiolytic effect of intra-amygdala injection of midazolam and 8-hydroxy-2-(di-n-propylamino)tetralin in the elevated T-maze. Eur J Pharmacol 369:267–270

    Article  PubMed  CAS  Google Scholar 

  • Zanoveli JM, Carvalho MC, Cunha JM, Brandao ML (2009) Extracellular serotonin level in the basolateral nucleus of the amygdala and dorsal periaqueductal gray under unconditioned and conditioned fear states: an in vivo microdialysis study. Brain Res 1294:106–115

    Article  PubMed  CAS  Google Scholar 

  • Zhong P, Yuen EY, Yan Z (2008) Modulation of neuronal excitability by serotonin-NMDA interactions in prefrontal cortex. Mol Cell Neurosci 38:290–299

    Article  PubMed  CAS  Google Scholar 

  • Zhou FC, Tao-Cheng JH, Segu L, Patel T, Wang Y (1998) Serotonin transporters are located on the axons beyond the synaptic junctions: anatomical and functional evidence. Brain Res 805:241–254

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The writing of this article and the authors’ related research were supported by the Deutsche Forschungsgemeinschaft (SFB 581/B9 and Z3, RTG 1253, SFB TRR 58/A1 and A5, KFO 125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Asan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asan, E., Steinke, M. & Lesch, KP. Serotonergic innervation of the amygdala: targets, receptors, and implications for stress and anxiety. Histochem Cell Biol 139, 785–813 (2013). https://doi.org/10.1007/s00418-013-1081-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1081-1

Keywords

Navigation