Skip to main content
Log in

TRPC3 ion channel subunit immunolocalization in the cochlea

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Canonical transient receptor potential (TRPC) subunits assemble as tetramers to form ion channels with high calcium (Ca2+) permeability. Here, we investigated the possibility that TRPC3 ion channels are broadly expressed in the adult guinea pig and mouse cochleae. Using immunofluorescence, pronounced labeling occurred in the spiral ganglion (SG) neurons, inner hair cells (IHC), outer hair cells (OHC) and epithelial cells lining scala media. TRPC3 expression was homogeneous in the SG throughout the cochlea. In contrast, there was marked spatial variation in the immunolabeling in the cochlear hair cells with respect to location. This likely relates to the tonotopy of these cells. TRPC3 immunolabeling was more pronounced in the IHC than OHC. Both basal region IHC and OHC had higher TRPC3 expression levels than the corresponding cells from the apical region of the cochlea. These data suggest that TRPC3 ion channels contribute to Ca2+ homeostasis associated with the hair cells, with higher ion fluxes in more basal regions of the cochlea, and may also be a significant pathway for Ca2+ entry associated with auditory neurotransmission via the SG neurons. TRPC3 expression was also identified within the spiral limbus region, inner and outer sulcus, but without evidence for spatial variation in expression level. Expression in these gap junction-coupled epithelial cells lining scala media is indicative of a contribution of TRPC3 channels to cochlear electrochemical homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Becker EB, Oliver PL, Glitsch MD, Banks GT, Achilli F, Hardy A, Nolan PM, Fisher EM, Davies KE (2009) A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. PNAS (USA) 106:6706–6711

    Article  CAS  Google Scholar 

  • Chiba T, Marcus DC (2000) Nonselective cation and BK channels in apical membrane of outer sulcus epithelial cells. J Membr Biol 174:167–179

    Article  CAS  PubMed  Google Scholar 

  • Corey DP (2006) What is the hair cell transduction channel? J Physiol 576:23–28

    Article  CAS  PubMed  Google Scholar 

  • Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin S-Y, Vollrath MA, Amalfitano A, Cheung ELM, Derfler BH, Duggan A, Geleoc GSG, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang D-S (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730

    Article  CAS  PubMed  Google Scholar 

  • Cuajungco MP, Grimm C, Heller S (2007) TRP channels as candidates for hearing and balance abnormalities in vertebrates. Biochim Biophys Acta 1772:1022–1027

    CAS  PubMed  Google Scholar 

  • Damann N, Voets T, Nilius B (2008) TRPs in our senses. Curr Biol 18:R880–R889

    Article  CAS  PubMed  Google Scholar 

  • Dulon D, Jagger DJ, Lin X, Davis RL (2006) Neuromodulation in the spiral ganglion: Shaping signals from the organ of Corti to the CNS. J Membr Biol 209:167–175

    Article  CAS  PubMed  Google Scholar 

  • Friedman RA, Van Laer L, Huentelman MJ, Sheth SS, Van Eyken E, Corneveaux JJ, Tembe WD, Halperin RF, Thorburn AQ, Thys S, Bonneux S, Fransen E, Huyghe J, Pyykko I, Cremers CW, Kremer H, Dhooge I, Stephens D, Orzan E, Pfister M, Bille M, Parving A, Sorri M, Van de Heyning PH, Makmura L, Ohmen JD, Linthicum FH Jr, Fayad JN, Pearson JV, Craig DW, Stephan DA, Van Camp G (2009) GRM7 variants confer susceptibility to age-related hearing impairment. Hum Mol Genet 18:785–796

    Article  CAS  PubMed  Google Scholar 

  • Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, Blum R, Dietrich A, Freichel M, Flockerzi V, Birnbaumer L, Konnerth A (2008) TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59:392–398

    Article  CAS  PubMed  Google Scholar 

  • Housley GD, Marcotti W, Navaratnam D, Yamoah EN (2006) Hair cells-beyond the transducer. J Membr Biol 209:89–118

    Article  CAS  PubMed  Google Scholar 

  • Huang WC, Young JS, Glitsch MD (2007) Changes in TRPC channel expression during postnatal development of cerebellar neurons. Cell Calcium 42:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Dulon D (2002) Nonselective cation conductance activated by muscarinic and purinergic receptors in rat spiral ganglion neurons. Am J Physiol Cell Physiol 282:C1121–C1135

    CAS  PubMed  Google Scholar 

  • Ito K, Rome C, Bouleau Y, Dulon D (2002) Substance P mobilizes intracellular calcium and activates a nonselective cation conductance in rat spiral ganglion neurons. Eur J Neurosci 16:2095–2102

    Article  PubMed  Google Scholar 

  • Jagger DJ, Forge A (2006) Compartmentalized and signal-selective gap junctional coupling in the hearing cochlea. J Neurosci 26:1260–1268

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Zhou J, Tai Y, Wang Y (2007) TRPC channels promote cerebellar granule neuron survival. Nat Neurosci 10:59–567

    Article  Google Scholar 

  • Kitahara T, Li H-S, Balaban CD (2005) Changes in transient receptor potential cation channel superfamily V (TRPV) mRNA expression in the mouse inner ear ganglia after kanamycin challenge. Hear Res 201:132–144

    Article  CAS  PubMed  Google Scholar 

  • Li HS, Xu XZ, Montell C (1999) Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron 24:261–273

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Jia YC, Cui K, Li N, Zheng ZY, Wang YZ, Yuan XB (2005) Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434:894–898

    Article  CAS  PubMed  Google Scholar 

  • Liang F, Niedzielski A, Schulte BA, Spicer SS, Hazen-Martin DJ, Shen Z (2003) A voltage- and Ca2+-dependent big conductance K channel in cochlear spiral ligament fibrocytes. Pflugers Arch Eur J Physiol 445:683–692

    CAS  Google Scholar 

  • Liang F, Hu W, Schulte BA, Mao C, Qu C, Hazen-Martin DJ, Shen Z (2004) Identification and characterization of an L-type Cav1.2 channel in spiral ligament fibrocytes of gerbil inner ear. Brain Res Mol Brain Res 125:40–46

    Article  CAS  PubMed  Google Scholar 

  • Mammano F, Frolenkov GI, Lagostena L, Belyantseva IA, Kurc M, Dodane V, Colavita A, Kachar B (1999) ATP-induced Ca2+ release in cochlear outer hair cells: localization of an inositol triphosphate-gated Ca2+ store to the base of the sensory hair bundle. J Neurosci 19:6918–6929

    CAS  PubMed  Google Scholar 

  • McGuinness SL, Shepherd RK (2005) Exogenous BDNF rescues rat spiral ganglion neurons in vivo. Otol Neurotol 26:1064–1072

    Article  PubMed  Google Scholar 

  • Mou K, Adamson CL, Davis RL (1998) Time-dependence and cell-type specificity of synergistic neurotrophin actions on spiral ganglion neurons. J Comp Neurol 402:129–139

    Article  CAS  PubMed  Google Scholar 

  • O’Neil RG, Heller S (2005) The mechanosensitive nature of TRPV channels. Pflugers Arch Eur J Physiol 451:193–203

    Article  Google Scholar 

  • Peng BG, Li QX, Ren TY, Ahmad S, Chen SP, Chen P, Lin X (2004) Group I metabotropic glutamate receptors in spiral ganglion neurons contribute to excitatory neurotransmissions in the cochlea. Neuroscience 123:221–230

    Article  CAS  PubMed  Google Scholar 

  • Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Ann Rev Physiol 68:619–647

    Article  CAS  Google Scholar 

  • Raybould NP, Housley GD (1997) Variation in expression of the outer hair cell P2X receptor conductance along the guinea-pig cochlea. J Physiol 498:717–727

    CAS  PubMed  Google Scholar 

  • Raybould NP, Jagger DJ, Housley GD (2001) Positional analysis of guinea-pig inner hair cell membrane conductances: implications for regulation of the membrane filter. JARO 2:362–376

    Article  CAS  PubMed  Google Scholar 

  • Raybould NP, Jagger DJ, Kanjhan R, Greenwood D, Laslo P, Hoya N, Soeller C, Cannell MB, Housley GD (2007) TRPC-like conductance mediates restoration of intracellular Ca2+ in cochlear outer hair cells in the guinea-pig and rat. J Physiol 579:101–113

    Article  CAS  PubMed  Google Scholar 

  • Roehm PC, Xu N, Woodson EA, Green SH, Hansen MR (2008) Membrane depolarization inhibits spiral ganglion neurite growth via activation of multiple types of voltage sensitive calcium channels and calpain. Mol Cell Neurosci 37:376–387

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Liang F, Hazen-Martin DJ, Schulte BA (2004) BK channels mediate the voltage-dependent outward current in type I spiral ligament fibrocytes. Hear Res 187:35–43

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Harada N, Kubo N, Liu B, Mizuno A, Suzuki M, Yamashita T (2006) Functional expression of transient receptor potential vanilloid 4 in the mouse cochlea. Neuroreport 17:135–139

    Article  CAS  PubMed  Google Scholar 

  • Skinner LJ, Enee V, Beurg M, Jung HH, Ryan AF, Hafidi A, Aran JM, Dulon D (2003) Contribution of BK Ca2+-activated K+ channels to auditory neurotransmission in the Guinea-pig cochlea. J Neurophysiol 90:320–332

    Article  CAS  PubMed  Google Scholar 

  • Spicer SS, Schulte BA (1998) Evidence for a medial K+ recycling pathway from inner hair cells. Hear Res 118:1–12

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Ahmad S, Chen S, Tang W, Zhang Y, Chen P, Lin X (2005) Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts. Am J Physiol 288:C613–C623

    Article  CAS  Google Scholar 

  • Tabuchi K, Suzuki M, Mizuno A, Hara A (2005) Hearing impairment in TRPV4 knockout mice. Neurosci Lett 382:304–308

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Lin Y, Zhang Z, Tikunova S, Birnbaumer L, Zhu MX (2001) Identification of common binding sites for calmodulin and inositol 1, 4, 5-trisphosphate receptors on the carboxyl termini of trp channels. J Biol Chem 276:21303–21310

    Article  CAS  PubMed  Google Scholar 

  • van Aken AFJ, Atiba-Davies M, Marcotti W, Goodyear RJ, Bryant JE, Richardson GP, Noben-Trauth K, Kros CJ (2008) TRPML3 mutations cause impaired mechano-electrical transduction and depolarization by an inward-rectifier cation current in auditory hair cells of varitint-waddler mice. J Physiol 586:5403–5418

    Article  PubMed  Google Scholar 

  • Ylikoski J, Pirvola U, Moshnyakov M, Palgi J, Arumae U, Saarma M (1993) Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hear Res 65:69–78

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Tang J, Tikunova S, Johnson JD, Chen Z, Qin N, Dietrich A, Stefani E, Birnbaumer L, Zhu MX (2001) Activation of Trp3 by inositol 1, 4, 5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. PNAS (USA) 98:3168–3173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge support from UNSW Faculty of Medicine Translational Neuroscience Facility funding and in part, the support of the Intramural Research Program of the NIH (Project Z01-ES101684 to LB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary D. Housley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tadros, S.F., Kim, Y., Phan, P.A.B. et al. TRPC3 ion channel subunit immunolocalization in the cochlea. Histochem Cell Biol 133, 137–147 (2010). https://doi.org/10.1007/s00418-009-0653-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-009-0653-6

Keywords

Navigation