Skip to main content
Log in

Temporal profiles of axonal injury following impact acceleration traumatic brain injury in rats—a comparative study with diffusion tensor imaging and morphological analysis

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Traumatic axonal injury (TAI) plays a major role in the development of neurological impairments after traumatic brain injury (TBI), but it is commonly difficult to evaluate it precisely and early with conventional histological biomarkers, especially when the patients experience short-term survival after TBI. Diffusion tensor imaging (DTI) has shown some promise in detecting TAI, but longitudinal studies on the compromised white matter with DTI at early time points (≤72 h) following impact acceleration TBI are still absent. In the present study, rats were subjected to the Marmarou model and imaged with DTI at 3, 12, 24, and 72 h (n = 5 each) post-injury. Using a region-of-interest-based approach, the regions of interest including the corpus callosum, bilateral external capsule, internal capsule, and pyramidal tract were studied. Two DTI parameters, fraction anisotropy and axial diffusivity, were significantly reduced from 3 to 72 h in each region after trauma, corresponding to the gradient of axonal damage demonstrated by immunohistochemical staining of β-amyloid precursor protein and neurofilament light chain. Remarkably, DTI changes predicted the approximate time in the acute phase following TBI. These results indicate that the temporal profiles of diffusion parameters in DTI may be able to provide a tool for early diagnosis of TAI following impact acceleration TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig.2
Fig.3

Similar content being viewed by others

Abbreviations

TBI:

Traumatic brain injury

TAI:

Traumatic axonal injury

DTI:

Diffusion tensor imaging

β-APP:

β-Amyloid precursor protein

NF:

Neurofilament

ARBs:

Axonal retraction balls

AD:

Axial diffusivity

FA:

Fraction anisotropy

ADC:

Apparent diffusion coefficient

RD:

Radial diffusivity

ROIs:

Regions of interest

CC:

Corpus callosum

IC:

Internal capsule

LIC:

Left internal capsule

RIC:

Right internal capsule

EC:

External capsule

LEC:

Left external capsule

REC:

Right external capsule

PY:

Pyramidal tract

LPY:

Left pyramidal tract

RPY:

Right pyramidal tract

HP:

Hippocampus

TBS:

Tris-buffered saline

References

  1. Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC (2007) The impact of traumatic brain injuries: a global perspective. Neuro Rehabilitation 22:341–353

    PubMed  Google Scholar 

  2. Adams JH (1982) Diffuse axonal injury in non-missile head injury. Injury 13:444–445

    Article  PubMed  CAS  Google Scholar 

  3. Medana IM, Esiri MM (2003) Axonal damage: a key predictor of outcome in human CNS diseases. Brain 126:515–530

    Article  PubMed  CAS  Google Scholar 

  4. Büki A, Povlishock JT (2006) All roads lead to disconnection?—Traumatic axonal injury revisited. Acta Neurochir (Wien) 148:181–194

    Article  Google Scholar 

  5. Povlishock JT, Katz DI (2005) Update of neuropathology and neurological recovery after traumatic brain injury. J Head Trauma Rehabil 20:76–94

    Article  PubMed  Google Scholar 

  6. Strich SJ (1961) Shearing of nerve fibres as cause of brain damage due to head injury. Lancet 2:443–448

    Article  Google Scholar 

  7. Povlishock JT, Becker DP, Cheng CL, Vaughan GW (1983) Axonal change in minor head injury. J Neuropathol Exp Neurol 42:225–242

    Article  PubMed  CAS  Google Scholar 

  8. Christman CW, Grady MS, Walker SA, Holloway KL, Povlishock JT (1994) Ultrastructural studies of diffuse axonal injury in humans. J Neurotrauma 11:173–186

    Article  PubMed  CAS  Google Scholar 

  9. Yaghmai A, Povlishock J (1992) Traumatically induced reactive change as visualized through the use of monoclonal antibodies targeted to neurofilament subunits. J Neuropathol Exp Neurol 51:158–176

    Article  PubMed  CAS  Google Scholar 

  10. Smith DH, Chen XH, Iwata A, Graham DI (2003) Amyloid beta accumulation in axons after traumatic brain injury in humans. J Neurosurg 98:1072–1077

    Article  PubMed  CAS  Google Scholar 

  11. Hayashi T, Ago K, Ago M, Ogata M (2009) Two patterns of beta-amyloid precursor protein (APP) immunoreactivity in cases of blunt head injury. Leg Med (Tokyo) 11 Suppl 1:S171-S173

  12. Saatman KE, Creed J, Raghupathi R (2010) Calpain as a therapeutic target in traumatic brain injury. Neurotherapeutics 7:31–42

    Article  PubMed  CAS  Google Scholar 

  13. Blumbergs PC, Scott G, Manavis J, Wainwright H, Simpson DA, McLean AJ (1995) Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. J Neurotrauma 12:565–572

    Article  PubMed  CAS  Google Scholar 

  14. Oehmichen M, Meissner C, Schmidt V, Pedal I, König HG (1999) Pontine axonal injury after brain trauma and nontraumatic hypoxic–ischemic brain damage. Int J Legal Med 112:261–267

    Article  PubMed  CAS  Google Scholar 

  15. Ogata M (2007) Early diagnosis of diffuse brain damage resulting from a blunt head injury. Leg Med (Tokyo) 9:105–108

    Article  Google Scholar 

  16. Neil J, Miller J, Mukherjee P, Hüppi PS (2002) Diffusion tensor imaging of normal and injured developing human brain—a technical review. NMR Biomed 15:543–552

    Article  PubMed  CAS  Google Scholar 

  17. Sundgren PC, Dong Q, Gómez-Hassan D, Mukherji SK, Maly P, Welsh R (2004) Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology 46:339–350

    Article  PubMed  CAS  Google Scholar 

  18. Huisman TA, Schwamm LH, Schaefer PW, Koroshetz WJ, Shetty-Alva N, Ozsunar Y, Wu O, Sorensen AG (2004) Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR Am J Neuroradiol 25:370–376

    PubMed  Google Scholar 

  19. Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–539

    Article  PubMed  CAS  Google Scholar 

  20. Song SK, Yoshino J, Le TQ, Lin SJ, Sun SW, Cross AH, Armstrong RC (2005) Demyelination increases radial diffusivity in corpus callosum of rat brain. NeuroImage 26:132–140

    Article  PubMed  Google Scholar 

  21. Kim JH, Budde MD, Liang HF, Klein RS, Russell JH, Cross AH, Song SK (2006) Detecting axon damage in spinal cord from a rat model of multiple sclerosis. Neurobiol Dis 21:626–632

    Article  PubMed  CAS  Google Scholar 

  22. Deo AA, Grill RJ, Hasan KM, Narayana PA (2006) In vivo serial diffusion tensor imaging of experimental spinal cord injury. J Neurosci Res 83:801–810

    Article  PubMed  CAS  Google Scholar 

  23. Nevo U, Hauben E, Yoles E, Agranov E, Akselrod S, Schwartz M, Neeman M (2001) Diffusion anisotropy MRI for quantitative assessment of recovery in injured rat spinal cord. Magn Reson Med 45:1–9

    Article  PubMed  CAS  Google Scholar 

  24. Mac Donald CL, Dikranian K, Song SK, Bayly PV, Holtzman DM, Brody DL (2007) Detection of traumatic axonal injury with diffusion tensor imaging in a rat model of traumatic brain injury. Exp Neurol 205:116–131

    Article  PubMed  CAS  Google Scholar 

  25. Mac Donald CL, Dikranian K, Bayly P, Holtzman D, Brody D (2007) Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury. J Neurosci 27:11869–11876

    Article  PubMed  CAS  Google Scholar 

  26. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats. Part I: pathophysiology and biomechanics. J Neurosurg 80:291–300

    Article  PubMed  CAS  Google Scholar 

  27. Foda MA, Marmarou A (1994) A new model of diffuse brain injury in rats. Part II: morphological characterization. J Neurosurg 80:301–313

    Article  PubMed  CAS  Google Scholar 

  28. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Elsevier, Amsterdam

    Google Scholar 

  29. Marmarou CR, Walker SA, Davis CL, Povlishock JT (2005) Quantitative analysis of the relationship between intra-axonal neurofilament compaction and impaired axonal transport following diffuse traumatic brain injury. J Neurotrauma 22:1066–1080

    Article  PubMed  Google Scholar 

  30. Wang HC, Ma YB (2010) Experimental models of traumatic brain injury. J Clin Neurosci 17:157–162

    Article  PubMed  Google Scholar 

  31. Cernak I (2005) Animal models of head trauma. NeuroRx 2:410–422

    Article  PubMed  Google Scholar 

  32. Smith DH, Meaney DF, Shull WH (2003) Diffuse axonal injury in head trauma. J Head Trauma Rehabil 18:307–316

    Article  PubMed  Google Scholar 

  33. Farkas O, Tamás A, Zsombok A, Reglodi D, Pál J, Büki A, Lengvári I, Povlishock JT, Dóczi T (2004) Effects of pituitary adenylate cyclase activating polypeptide in a rat model of traumatic brain injury. Regul Pept 123:69–75

    Article  PubMed  CAS  Google Scholar 

  34. Adelson PD, Jenkins LW, Hamilton RL, Robichaud P, Tran MP, Kochanek PM (2001) Histopathologic response of the immature rat to diffuse traumatic brain injury. J Neurotrauma 18:967–976

    Article  PubMed  CAS  Google Scholar 

  35. Serbest G, Burkhardt MF, Siman R, Raghupathi R, Saatman KE (2007) Temporal profiles of cytoskeletal protein loss following traumatic axonal injury in mice. Neurochem Res 32:2006–2014

    Article  PubMed  CAS  Google Scholar 

  36. Chen XH, Meaney DF, Xu BN, Nonaka M, McIntosh TK, Wolf JA, Saatman KE, Smith DH (1999) Evolution of neurofilament subtype accumulation in axons following diffuse brain injury in the pig. J Neuropathol Exp Neurol 58:588–596

    Article  PubMed  CAS  Google Scholar 

  37. Li J, Li XY, Feng DF, Pan DC (2010) Biomarkers associated with diffuse traumatic axonal injury: exploring pathogenesis, early diagnosis, and prognosis. J Trauma 69:1610–1618

    Article  PubMed  CAS  Google Scholar 

  38. Stone JR, Singleton RH, Povlishock JT (2001) Intra-axonal neurofilament compaction does not evoke local axonal swelling in all traumatically injured axons. Exp Neurol 172:320–331

    Article  PubMed  CAS  Google Scholar 

  39. Singleton RH, Stone JR, Okonkwo DO, Pellicane AJ, Povlishock JT (2001) The immunophilin ligand FK506 attenuates axonal injury in an impact-acceleration model of traumatic brain injury. J Neurotrauma 18:607–614

    Article  PubMed  CAS  Google Scholar 

  40. Gentleman SM, Nash MJ, Sweeting CJ, Graham DI, Roberts GW (1993) Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci Lett 160:139–144

    Article  PubMed  CAS  Google Scholar 

  41. Marmarou CR, Povlishock JT (2006) Administration of the immunophilin ligand FK506 differentially attenuates neurofilament compaction and impaired axonal transport in injured axons following diffuse traumatic brain injury. Exp Neurol 197:353–362

    Article  PubMed  CAS  Google Scholar 

  42. Kraus MF, Susmaras T, Caughlin BP, Walker CJ, Sweeney JA, Little DM (2007) White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain 130:2508–2519

    Article  PubMed  Google Scholar 

  43. Westin CF, Maier SE, Mamata H, Nabavi A, Jolesz FA, Kikinis R (2002) Processing and visualization for diffusion tensor MRI. Med Image Anal 6:93–108

    Article  PubMed  Google Scholar 

  44. Newcombe VF, Williams GB, Nortje J, Bradley PG, Harding SG, Smielewski P, Coles JP, Maiya B, Gillard JH, Hutchinson PJ, Pickard JD, Carpenter TA, Menon DK (2007) Analysis of acute traumatic axonal injury using diffusion tensor imaging. Br J Neurosurg 21:340–348

    Article  PubMed  CAS  Google Scholar 

  45. Marquez de la Plata CD, Yang FG, Wang JY, Krishnan K, Bakhadirov K, Paliotta C, Aslan S, Devous MD, Moore C, Harper C, McColl R, Munro Cullum C, Diaz-Arrastia R (2010) Diffusion tensor imaging biomarkers for traumatic axonal injury: analysis of three analytic methods. J Int Neuropsychol Soc 17:24–35

    Article  PubMed  Google Scholar 

  46. Wortzel HS, Kraus MF, Filley CM, Anderson CA, Arciniegas DB (2011) Diffusion tensor imaging in mild traumatic brain injury litigation. J Am Acad Psychiatry Law 39:511–523

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars from State Education Ministry and the National Natural Science Foundation of China (Grant Nos. 30870674, 20921004, and 31070961) and partly by the Research Foundation for the Key Laboratory of Neuroscience and Neuroengineering from South Central University for Nationalities (XJS09001).

Conflict of interest

All authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiapei Dai, Hao Lei or Yiwu Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.09 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Sun, Y., Shan, D. et al. Temporal profiles of axonal injury following impact acceleration traumatic brain injury in rats—a comparative study with diffusion tensor imaging and morphological analysis. Int J Legal Med 127, 159–167 (2013). https://doi.org/10.1007/s00414-012-0712-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-012-0712-8

Keywords

Navigation