Skip to main content

Advertisement

Log in

The use of MRI-guided laser-induced thermal ablation for epilepsy

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

Epilepsy surgery is constantly researching for new options for patients with refractory epilepsy. MRI-guided laser-induced thermal ablation for epilepsy is an exciting new minimally invasive technology with an emerging use for lesionectomy of a variety of epileptogenic focuses (hypothalamic hamartomas, cortical dysplasias, cortical malformations, tubers) or as a disconnection tool allowing a new option of treatment without the hassles of an open surgery.

Methods

MRI-guided laser interstitial thermal therapy (MRgLITT) is a procedure for destroying tissue-using heat. To deliver this energy in a minimally invasive fashion, a small diameter fiber optic applicator is inserted into the lesion through a keyhole stereotactic procedure. The thermal energy induces damage to intracellular DNA and DNA-binding structures, ultimately leading to cell death. The ablation procedure is supervised by real-time MRI thermal mapping and confirmed by immediate post-ablation T1 or FLAIR MRI images.

Results

The present report includes an overview of the development and practice of an MR-guided laser ablation therapy known as MRI-guided laser interstitial thermal therapy (MRgLITT). The role of modern image-guided trajectory planning in MRgLITT will also be discussed, with particular emphasis on the treatment of refractory epilepsy using this novel, minimally invasive technique.

Conclusion

MRI-guided laser-induced thermal ablation for epilepsy is an exciting new minimally invasive technology that finds potential new applications every day in the neurosurgical field. It certainly brings a new perspective on the way we practice epilepsy surgery even though long-term results should be properly collected and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Figs. 3, 4
Fig. 5

Similar content being viewed by others

References

  1. Ryan RW, Spetzler RF, Preul MC (2009) Aura of technology and the cutting edge: a history of lasers in neurosurgery. Neurosurg Focus 27:E6

    Article  PubMed  Google Scholar 

  2. Earle K, Carpenter S, Roessman U, Ross M, Hayes J, Zettler E (1965) Central nervous system effects of laser radiation. Fed Proc 24:129

    PubMed  Google Scholar 

  3. Fine S, Klein E, Nowak W, Scott R, Laor Y, Simpson L, Crissey J, Donaghue J, Dehr U (1965) Interaction of laser radiation with biologic systems: I Studies on interaction with tissues. Fed Proc 24

  4. Krishnamurthy S, Powers S (1994) Lasers in neurosurgery. Lasers Surg Med 15:126–167

    Article  PubMed  CAS  Google Scholar 

  5. Rosomoff H, Carroll F (1966) Reaction of neoplasm and brain to laser. Arch Neurol 14:143–148

    Article  PubMed  CAS  Google Scholar 

  6. Stellar S, Polayni T, Bredemeier H (1970) Experimental studies with the carbon dioxide laser as a neurosurgical instrument. Med Biol Eng 8:549

    Article  PubMed  CAS  Google Scholar 

  7. Stellar S, Polayni T, Bredemeier H (1971) Lasers in surgery. In: Wolbarsht M (ed) Laser application in biology and medicine. Plenum, New York

    Google Scholar 

  8. Stellar S, Polayni T, Bredemeier H (1974) Lasers in surgery. In: Wolbarsht M (ed) Laser applications in biology and medicine. Plenum, New York

    Google Scholar 

  9. Heppner F (1978) The laser scalpel on the nervous system. In: Kaplan I (ed) Laser surgery II. Jerusalem Academic Press, Jerusalem, pp 28–30

    Google Scholar 

  10. Heppner F (1978) The laser scalpel in the nervous system. Wien Med Wochenschr 128:198–201

    PubMed  CAS  Google Scholar 

  11. Heppner F (1979) [Experiences with the CO2 laser in surgery of the nervous system]. Zentralblatt fur Neurochirurgie 40: 297–301, 303–294

  12. Takizawa T, Yamazaki T, Miura N, Matsumoto M, Tanaka Y, Takeuchi K, Nakata Y, Togashi O, Nagai M, Ariga T, Nishimura T, Mizutani H, Sano K (1980) Laser surgery of basal, orbital and ventricular meningiomas which are difficult to extirpate by conventional methods. Neurol Med Chir 20:729–737

    Article  CAS  Google Scholar 

  13. Beck O (1980) The use of the Nd-YAG and the CO2 laser in neurosurgery. Neurosurg Rev 3:261–266

    Article  PubMed  CAS  Google Scholar 

  14. Edwards M, Boggan J, Fuller T (1983) The laser in neurological surgery. J Neurosurg 59:555–566

    Article  PubMed  CAS  Google Scholar 

  15. Fan M, Ascher P, Germann R, Ebner F (1992) Temperature profiles of interstitial 1.06 Nd:YAG laserthermia in human cadaver brain. In: Spinelli P, Dal Fante M, Marchesini R (eds) Photodynamic therapy and biomedical lasers. Elsevier Science, Amsterdam, pp 349–353

    Google Scholar 

  16. Heisterkamp J, van Hillegersberg R, Zondervan PE, IJzermans JN (2001) Metabolic activity and DNA integrity in human hepatic metastases after interstitial laser coagulation (ILC). Lasers Surg Med 28(1):80–86

    Article  PubMed  CAS  Google Scholar 

  17. Bettag M, Ulrich F, Schober R, Furst G, Langen K, Sabel M, Kiwit J (1991) Stereotactic laser therapy in cerebral gliomas. Acta Neurochir Suppl 52:81–83

    Article  PubMed  CAS  Google Scholar 

  18. Kahn T, Bettag M, Ulrich F, Schwarzmaier HJ, Schober R, Furst G, Modder U (1994) MRI-guided laser-induced interstitial thermotherapy of cerebral neoplasms. J Comput Assist Tomogr 18:519–532

    Article  PubMed  CAS  Google Scholar 

  19. Schwabe B, Kahn T, Harth T, Ulrich F, Schwarzmaier HJ (1997) Laser-induced thermal lesions in the human brain: short- and long-term appearance on MRI. J Comput Assist Tomogr 21:818–825

    Article  PubMed  CAS  Google Scholar 

  20. Schwarzmaier H, Eickmeyer F, von Tempelhoff W, Fiedler V, Niehoff H, Ulrich S, Ulrich F (2005) MR-guided laser irradiation of recurrent glioblastomas. J Magn Reson Imaging JMRI 22:799–803

    Article  Google Scholar 

  21. Reimer P, Bremer C, Horch C, Morgenroth C, Allkempe T, Schuierer G (1998) MR-monitored LITT as a palliative concept in patients with high grade gliomas: preliminary clinical experience. J Magn Reson Imaging: JMRI 8:240–244

    Article  PubMed  CAS  Google Scholar 

  22. Carpentier A, Chauvet D, Reina V, Beccaria K, Leclerq D, McNichols RJ, Gowda A, Cornu P, Delattre JY (2012) MR-guided laser-induced thermal therapy (LITT) for recurrent glioblastomas. Lasers Surg Med 44:361–368

    Article  PubMed  Google Scholar 

  23. Schwarzmaier HJ, Eickmeyer F, von Tempelhoff W, Fiedler VU, Niehoff H, Ulrich SD, Yang Q, Ulrich F (2006) MR-guided laser-induced interstitial thermotherapy of recurrent glioblastoma multiforme: preliminary results in 16 patients. Eur J Radiol 59:208–215

    Article  PubMed  Google Scholar 

  24. Leonardi M, Lumenta C (2002) Stereotactic guided laser-induced interstitial thermotherapy (SLITT) in gliomas with intraoperative morphologic monitoring in an open MR: clinical experience. Minim Invasive Neurosurg 45:201–207

    Article  PubMed  CAS  Google Scholar 

  25. Jethwa PR, Barrese JC, Gowda A, Shetty A, Danish SF (2012) Magnetic resonance thermometry-guided laser-induced thermal therapy for intracranial neoplasms: initial experience. Neurosurgery 71(133–144):144–135

    Google Scholar 

  26. Jethwa PR, Lee JH, Assina R, Keller IA, Danish SF (2011) Treatment of a supratentorial primitive neuroectodermal tumor using magnetic resonance-guided laser-induced thermal therapy. J Neurosurg Pediatr 8:468–475

    Article  PubMed  Google Scholar 

  27. Carpentier A, McNichols RJ, Stafford RJ, Itzcovitz J, Guichard JP, Reizine D, Delaloge S, Vicaut E, Payen D, Gowda A, George B (2008) Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery 63:ONS21–ONS28. doi:10.1227/01.neu.0000335007.07381.df, discussion ONS28-29

    Article  PubMed  Google Scholar 

  28. Curry DJ, Gowda A, McNichols RJ, Wilfong AA (2012) MR-guided stereotactic laser ablation of epileptogenic foci in children. Epilepsy Behav 24:408–414

    Article  PubMed  Google Scholar 

  29. De Poorter J, De Wagter C, De Deene Y, Thomsen C, Ståhlberg F, Achten E (1995) Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle. Magn Reson Med : Off J Soc Magn Reson Med/Soc Magn Reson Med 33:74–81

    Article  Google Scholar 

  30. van Gemert M, Welch A (eds) (1995) Optical–thermal response of laser-irradiated tissue. Springer, New York. ISBN 0306449269

    Google Scholar 

  31. Tracz RA, Wyman DR, Little PB, Towner RA, Stewart WA, Schatz SW, Wilson BC, Pennock PW, Janzen EG (1993) Comparison of magnetic resonance images and the histopathological findings of lesions induced by interstitial laser photocoagulation in the brain. Lasers Surg Med 13:45–54

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulma Tovar-Spinoza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tovar-Spinoza, Z., Carter, D., Ferrone, D. et al. The use of MRI-guided laser-induced thermal ablation for epilepsy. Childs Nerv Syst 29, 2089–2094 (2013). https://doi.org/10.1007/s00381-013-2169-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-013-2169-6

Keywords

Navigation