Skip to main content

Advertisement

Log in

Effect of GABAergic inhibition on odorant concentration coding in mushroom body intrinsic neurons of the honeybee

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Kenyon cells, the intrinsic neurons of the insect mushroom body, have the intriguing property of responding in a sparse way to odorants. Sparse neuronal codes are often invariant to changes in stimulus intensity and duration, and sparse coding often depends on global inhibition. We tested if this is the case for honeybees’ Kenyon cells, too, and used in vivo Ca2+ imaging to record their responses to different odorant concentrations. Kenyon cells responded not only to the onset of odorant stimuli (ON responses), but also to their termination (OFF responses). Both, ON and OFF responses increased with increasing odorant concentration. ON responses were phasic and invariant to the duration of odorant stimuli, while OFF responses increased with increasing odorant duration. Pharmacological blocking of GABA receptors in the brain revealed that ionotropic GABAA and metabotropic GABAB receptors attenuate Kenyon cells’ ON responses without changing their OFF responses. Ionotropic GABAA receptors attenuated Kenyon cell ON responses more strongly than metabotropic GABAB receptors. However, the response dynamic, temporal resolution and paired-pulse depression did not depend on GABAA transmission. These data are discussed in the context of mechanisms leading to sparse coding in Kenyon cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GABA:

γ-Aminobutyric acid

cKC:

Clawed Kenyon cell

MB:

Mushroom body

PCT:

Protocerebral-calycal tract

BMI:

Bicuculline methiodide

PTX:

Picrotoxin

CGP:

CGP54626

ROI:

Region of interest

References

  • Abel R, Rybak J, Menzel R (2001) Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera. J Comp Neurol 437:363–383

    Article  CAS  PubMed  Google Scholar 

  • Asay MJ, Boyd SK (2006) Characterization of the binding of [3H]CGP54626 to GABAB receptors in the male bullfrog (Rana catesbeiana). Brain Res 1094:76–85

    Article  CAS  PubMed  Google Scholar 

  • Assisi C, Stopfer M, Laurent G, Bazhenov M (2007) Adaptive regulation of sparseness by feedforward inhibition. Nat Neurosci 10:1176–1184

    Article  CAS  PubMed  Google Scholar 

  • Barbara GS, Zube C, Rybak J, Gauthier M, Grünewald B (2005) Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. J Comp Physiol A 191:823–836

    Article  Google Scholar 

  • Bicker G (1999) Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee. Microsc Res Techniq 45:174–183

    Article  CAS  Google Scholar 

  • Bicker G, Schäfer S, Kingan TG (1985) Mushroom body feedback interneurones in the honeybee show GABA-like immunoreactivity. Brain Res 360:394–397

    Article  CAS  PubMed  Google Scholar 

  • Chou YH, Spletter ML, Yaksi E, Leong JC, Wilson RI, Luo L (2010) Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nat Neurosci 13:439–449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choudhary AF, Laycock I, Wright GA (2012) gamma-Aminobutyric acid receptor A-mediated inhibition in the honeybee’s antennal lobe is necessary for the formation of configural olfactory percepts. Eur J Neurosci 35:1718–1724

    Article  PubMed  Google Scholar 

  • Davis RL (1993) Mushroom bodies and Drosophila learning. Neuron 11:1–14

    Article  CAS  PubMed  Google Scholar 

  • Deglise P, Grünewald B, Gauthier M (2002) The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci Let 321:13–16

    Article  CAS  Google Scholar 

  • Demmer H, Kloppenburg P (2009) Intrinsic membrane properties and inhibitory synaptic input of Kenyon cells as mechanisms for sparse coding? J Neurophysiol 102:1538–1550

    Article  CAS  PubMed  Google Scholar 

  • El Hassani AK, Giurfa M, Gauthier M, Armengaud C (2008) Inhibitory neurotransmission and olfactory memory in honeybees. Neurobiol Learn Mem 90:589–595

    Article  PubMed  Google Scholar 

  • Enell L, Hamasaka Y, Kolodziejczyk A, Nässel DR (2007) gamma-Aminobutyric acid (GABA) signaling components in Drosophila: immunocytochemical localization of GABA(B) receptors in relation to the GABA(A) receptor subunit RDL and a vesicular GABA transporter. J Comp Neurol 505:18–31

    Article  CAS  PubMed  Google Scholar 

  • Farkhooi F, Froese A, Muller E, Menzel R, Nawrot MP (2013) Cellular adaptation facilitates sparse and reliable coding in sensory pathways. PLoS Comput Biol 9(10):e1003251

    Article  PubMed Central  PubMed  Google Scholar 

  • Fonta C, Sun XJ, Masson C (1993) Morphology and spatial-distribution of bee antennal lobe interneurons responsive to odors. Chem Sens 18:101–119

    Article  Google Scholar 

  • Galizia CG, Kimmerle B (2004) Physiological and morphological characterization of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy. J Comp Physiol A 190:21–38

    Article  CAS  Google Scholar 

  • Galizia CG, Joerges J, Kuttner A, Faber T, Menzel R (1997) A semi-in vivo preparation for optical recording of the insect brain. J Neurosci Method 76:61–69

    Article  CAS  Google Scholar 

  • Ganeshina O, Menzel R (2001) GABA-immunoreactive neurons in the mushroom bodies of the honeybee: an electron microscopic study. J Comp Neurol 437:335–349

    Article  CAS  PubMed  Google Scholar 

  • Grünewald B (1999a) Morphology of feedback neurons in the mushroom body of the honeybee, Apis mellifera. J Comp Neurol 404:114–126

    Article  PubMed  Google Scholar 

  • Grünewald B (1999b) Physiological properties and response modulations of mushroom body feedback neurons during olfactory learning in the honeybee Apis mellifera. J Comp Physiol A 185(6):565–576

    Article  Google Scholar 

  • Grünewald B, Wersing A (2008) An ionotropic GABA receptor in cultured mushroom body Kenyon cells of the honeybee and its modulation by intracellular calcium. J Comp Physiol A 194:329–340

    Article  Google Scholar 

  • Haehnel M, Menzel R (2010) Sensory representation and learning-related plasticity in mushroom body extrinsic feedback neurons of the protocerebral tract. Front Syst Neurosci 4:161

    Article  PubMed Central  PubMed  Google Scholar 

  • Haehnel M, Menzel R (2012) Long-term memory and response generalization in mushroom body extrinsic neurons in the honeybee Apis mellifera. J Exp Biol 215:559–565

    Article  PubMed  Google Scholar 

  • Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275

    Article  CAS  PubMed  Google Scholar 

  • Honegger KS, Campbell RAA, Turner GC (2011) Cellular-resolution population imaging reveals robust sparse coding in the Drosophila mushroom body. J Neurosci 31:11772–11785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang J, Zhang W, Qiao W, Hu A, Wang Z (2010) Functional connectivity and selective odor responses of excitatory local interneurons in Drosophila antennal lobe. Neuron 67:1021–1033

    Article  CAS  PubMed  Google Scholar 

  • Ito I, Ong RCY, Raman B, Stopfer M (2008) Sparse odor representation and olfactory learning. Nat Neurosci 11:1177–1184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jortner RA, Farivar SS, Laurent G (2007) A simple connectivity scheme for sparse coding in an olfactory system. J Neurosci 27:1659–1669

    Article  CAS  PubMed  Google Scholar 

  • Krofczik S, Menzel R, Nawrot MP (2009) Rapid odor processing in the honeybee antennal lobe network. Front Comput Neurosc 2:9

    Google Scholar 

  • Laurent G (2002) Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci 3:884–895

    Article  CAS  PubMed  Google Scholar 

  • Laurent G, Stopfer M, Friedrich RW, Rabinovich MI, Volkovskii A, Abarbanel HDI (2001) Odor encoding as an active, dynamical process: experiments, computation, and theory. Annu Rev Neurosci 24:263–297

    Article  CAS  PubMed  Google Scholar 

  • Lei H, Riffell JA, Gage SL, Hildebrand JG (2009) Contrast enhancement of stimulus intermittency in a primary olfactory network and its behavioral significance. J Biol 8:21

    Article  PubMed Central  PubMed  Google Scholar 

  • Lei Z, Chen K, Li H, Liu H, Guo A (2013) The GABA system regulates the sparse coding of odors in the mushroom bodies of Drosophila. Biochem Biophys Res Comm 436:35–40

    Article  CAS  PubMed  Google Scholar 

  • Leitch B, Laurent G (1996) GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. J Comp Neurol 372:487–514

    Article  CAS  PubMed  Google Scholar 

  • Menzel R (2012) The honeybee as a model for understanding the basis of cognition. Nat Rev Neurosci 13:758–768

    Article  CAS  PubMed  Google Scholar 

  • Mobbs PG (1982) The brain of the honeybee Apis mellifera.1. The connections and spatial-organization of the mushroom bodies. Philos T Roy Soc B 298:309–354

    Article  Google Scholar 

  • Müller D, Abel R, Brandt R, Zockler M, Menzel R (2002) Differential parallel processing of olfactory information in the honeybee, Apis mellifera L. J Comp Physiol A 188:359–370

    Article  Google Scholar 

  • Murthy M, Fiete I, Laurent G (2008) Testing odor response stereotypy in the Drosophila mushroom body. Neuron 59:1009–1023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olsen SR, Wilson RI (2008) Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452:956–960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Papadopoulou M, Cassenaer S, Nowotny T, Laurent G (2011) Normalization for sparse encoding of odors by a wide-field interneuron. Science 332:721–725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pelz C, Gerber B, Menzel R (1997) Odorant intensity as a determinant for olfactory conditioning in honeybees: roles in discrimination, overshadowing and memory consolidation. J Exp Biol 200:837–847

    CAS  PubMed  Google Scholar 

  • Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297:359–365

    Article  CAS  PubMed  Google Scholar 

  • Perez-Orive J, Bazhenov M, Laurent G (2004) Intrinsic and circuit properties favor coincidence detection for decoding oscillatory input. J Neurosci 24:6037–6047

    Article  CAS  PubMed  Google Scholar 

  • Root CM, Masuyama K, Green DS, Enell LE, Nassel DR, Lee CH, Wang JW (2008) A presynaptic gain control mechanism fine-tunes olfactory behavior. Neuron 59:311–321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rotte C, Witte J, Blenau W, Baumann O, Walz B (2009) Source, topography and excitatory effects of GABAergic innervation in cockroach salivary glands. J Exp Biol 212:126–136

    Article  CAS  PubMed  Google Scholar 

  • Rybak J, Menzel R (1993) Anatomy of the mushroom bodies in the honey-bee brain: the neuronal connections of the alpha-lobe. J Comp Neurol 334:444–465

    Article  CAS  PubMed  Google Scholar 

  • Sachse S, Galizia CG (2002) Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J Neurophysiol 87:1106–1117

    PubMed  Google Scholar 

  • Sachse S, Galizia CG (2003) The coding of odour-intensity in the honeybee antennal lobe: local computation optimizes odour representation. Eur J Neurosci 18:2119–2132

    Article  PubMed  Google Scholar 

  • Sachse S, Peele P, Silbering AF, Gühmann M, Galizia CG (2006) Role of histamine as a putative inhibitory transmitter in the honeybee antennal lobe. Front Zool 3:22

    Article  PubMed Central  PubMed  Google Scholar 

  • Schäfer S, Bicker G (1986) Distribution of GABA-like immunoreactivity in the brain of the honeybee. J Comp Neurol 246:287–300

    Article  PubMed  Google Scholar 

  • Schäfer S, Rosenboom H, Menzel R (1994) Ionic currents of Kenyon cells from the mushroom body of the honeybee. J Neurosci 14:4600–4612

    PubMed  Google Scholar 

  • Seki Y, Rybak J, Wicher D, Sachse S, Hansson BS (2010) Physiological and morphological characterization of local interneurons in the Drosophila antennal lobe. J Neurophysiol 104:1007–1019

    Article  PubMed  Google Scholar 

  • Silbering AF, Galizia CG (2007) Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions. J Neurosci 27:11966–11977

    Article  CAS  PubMed  Google Scholar 

  • Stopfer M (2005) Olfactory coding: inhibition reshapes odor responses. Curr Biol 15:R996–R998

    Article  CAS  PubMed  Google Scholar 

  • Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390:70–74

    Article  CAS  PubMed  Google Scholar 

  • Stopfer M, Jayaraman V, Laurent G (2003) Intensity versus identity coding in an olfactory system. Neuron 39:991–1004

    Article  CAS  PubMed  Google Scholar 

  • Strauch M, Ditzen M, Galizia CG (2012) Keeping their distance? Odor response patterns along the concentration range. Front Syst Neurosci 6:71

    Article  PubMed Central  PubMed  Google Scholar 

  • Strausfeld NJ (2002) Organization of the honey bee mushroom body: representation of the calyx within the vertical and gamma lobes. J Comp Neurol 450:4–33

    Article  PubMed  Google Scholar 

  • Sun XJ, Fonta C, Masson C (1993) Odor quality processing by bee antennal lobe interneurons. Chem Sens 18:355–377

    Article  CAS  Google Scholar 

  • Szyszka P, Ditzen M, Galkin A, Galizia CG, Menzel R (2005) Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. J Neurophysiol 94:3303–3313

    Article  PubMed  Google Scholar 

  • Szyszka P, Galkin A, Menzel R (2008) Associative and non-associative plasticity in Kenyon cells of the honeybee mushroom body. Front Syst Neurosci 2:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Turner GC, Bazhenov M, Laurent G (2008) Olfactory representations by Drosophila mushroom body neurons. J Neurophysiol 99:734–746

    Article  PubMed  Google Scholar 

  • Wang Y, Guo HF, Pologruto TA, Hannan F, Hakker I, Svoboda K, Zhong Y (2004) Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2 + imaging. J Neurosci 24:6507–6514

    Article  CAS  PubMed  Google Scholar 

  • Wilson RI, Laurent G (2005) Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 25:9069–9079

    Article  CAS  PubMed  Google Scholar 

  • Wright GA, Carlton M, Smith BH (2009) A honeybee’s ability to learn, recognize, and discriminate odors depends upon odor sampling time and concentration. Behav Neurosci 123:36–43

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamagata N, Schmuker M, Szyszka P, Mizunami M, Menzel R (2009) Differential odor processing in two olfactory pathways in the honeybee. Front Syst Neurosci 3:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Yarali A, Ehser S, Hapil FZ, Huang J, Gerber B (2009) Odour intensity learning in fruit flies. P Roy Soc B 276:3413–3420

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Silke Sachse, Melanie Haehnel and Nobuhiro Yamagata for their help and advice during the experiments. The work was supported by a grant of the Deutsche Forschungsgemeinschaft (Me 365/31-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randolf Menzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Froese, A., Szyszka, P. & Menzel, R. Effect of GABAergic inhibition on odorant concentration coding in mushroom body intrinsic neurons of the honeybee. J Comp Physiol A 200, 183–195 (2014). https://doi.org/10.1007/s00359-013-0877-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0877-8

Keywords

Navigation