Skip to main content
Log in

Olfactory conditioning of proboscis activity in Drosophila melanogaster

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Olfactory learning and memory processes in Drosophila have been well investigated with aversive conditioning, but appetitive conditioning has rarely been documented. Here, we report for the first time individual olfactory conditioning of proboscis activity in restrained Drosophila melanogaster. The protocol was adapted from those developed for proboscis extension conditioning in the honeybee Apis mellifera. After establishing a scale of small proboscis movements necessary to characterize responses to olfactory stimulation, we applied Pavlovian conditioning, with five trials consisting of paired presentation of a banana odour and a sucrose reward. Drosophila showed conditioned proboscis activity to the odour, with a twofold increase of percentage of responses after the first trial. No change occurred in flies experiencing unpaired presentations of the stimuli, confirming an associative basis for this form of olfactory learning. The adenylyl cyclase mutant rutabaga did not exhibit learning in this paradigm. This protocol generated at least a short-term memory of 15 min, but no significant associative memory was detected at 1 h. We also showed that learning performance was dependent on food motivation, by comparing flies subjected to different starvation regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CS:

Conditioned stimulus

US:

Unconditioned stimulus

CR:

Conditioned response

UR:

Unconditioned response

WT:

Wild-type

SOG:

Suboesophageal ganglion

N:

No movement

T:

Labellum trembling

PL:

Palp trembling and/or slight extension of the labellum

E1:

Extension of the labellum

E2:

Extension of the labellum and the haustellum

E3:

Complete extension

Ns:

Samples size

References

  • Ackerman SL, Siegel RW (1986) Chemically reinforced conditioned courtship in Drosophila: responses to wild-type and the dunce, amnesiac and don giovanni mutants. J Neurogenet 3:111–123

    PubMed  CAS  Google Scholar 

  • Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97:107–119

    Article  PubMed  CAS  Google Scholar 

  • Campan R, Scapini F (2002) Ethologie, approche systématique du comportement. De Boeck Université, Bruxelles, pp 134–136

    Google Scholar 

  • Dahanukar A, Foster K, van der Goes van Naters WM, Carlson JR (2001) A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat Neurosci 4:1182–1186

    Article  PubMed  CAS  Google Scholar 

  • Davis RL (2005) Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci 28:275–302

    Article  PubMed  CAS  Google Scholar 

  • de Belle SJ, Heisenberg M (1994) Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263(5147):692–695

    Article  PubMed  Google Scholar 

  • de Bruyne M, Clyne PJ, Carlson JR (1999) Odor coding in a model olfactory organ: the Drosophila maxillary palp. J Neurosci 19(11):4520–4532

    PubMed  Google Scholar 

  • DeJianne D, McGuire TR, Pruzan-Hotchkiss A (1985) Conditioned suppression of proboscis extension in Drosophila melanogaster. J Comp Psychol 99(1):74–80

    Article  PubMed  CAS  Google Scholar 

  • Dethier VG, Solomon RL, Turner LH (1965) Sensory input and central excitation and inhibition in the blowfly. J Comp Physiol Psychol 60(3):303–313

    Article  PubMed  CAS  Google Scholar 

  • Devaud JM, Acebes A, Ramaswami M, Ferrùs A (2003) Structural and functional changes in the olfactory pathways of adult Drosophila take place at a critical age. J Neurobiol 56(1):13–23

    Article  PubMed  Google Scholar 

  • Dudai Y, Corfas G, Hazvi S (1988) What is the possible contribution of Ca2+-stimulated adenylate cyclase to acquisition, consolidation and retention of an associative olfactory memory in Drosophila. J Comp Physiol A 162(1):101–109

    Article  PubMed  CAS  Google Scholar 

  • Duerr JS, Quinn WG (1982) Three Drosophila mutations that block associative learning also affect habituation and sensitization. Proc Natl Acad Sci USA 79(11):3646–3650

    Article  PubMed  CAS  Google Scholar 

  • Edgecomb RS, Murdock LL (1991) Central projections of axons from taste hairs on the labellum and tarsi of the blowfly, Phormia regina Meigen. J Comp Biol 315(3):431–444

    Google Scholar 

  • Edgecomb RS, Harth CE, Schneiderman AM (1994) Regulation of feeding in adult Drosophila melanogaster varies with feeding regime and nutritional state. J Exp Biol 197:215–235

    PubMed  CAS  Google Scholar 

  • Ejima A, Smith BPC, Lucas C, Levine JD, Griffith LC (2005) Sequential learning of pheromonal cues modulates memory consolidation in trainer-specific associative courtship conditioning. Curr Biol 15:194–2

    Article  PubMed  CAS  Google Scholar 

  • Faber T, Joerges J, Menzel R (1999) Associative learning modifies neural representations of odors in the insect brain. Nat Neurosci 2(1):74–78

    Article  PubMed  CAS  Google Scholar 

  • Fan RJ, Anderson P, Hansson BS (1997) Behavioural analysis of olfactory conditioning in the moth Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). J Exp Biol 200:2969–2976

    PubMed  Google Scholar 

  • Fresquet N, Fournier D, Gauthier M (1998) A new attempt to assess the effect of learning processes on the cholinergic system: studies on fruitflies and honeybees. Comp Biochem Physiol B 119(2):349–353

    Article  PubMed  CAS  Google Scholar 

  • Fresquet N (1999) Effects of aging on the acquisition and extinction of excitatory conditioning in Drosophila melanogaster. Physiol Behav 67(2):205–211

    Article  PubMed  CAS  Google Scholar 

  • Frye MA, Tarsinato M, Dickinson MH (2003) Odor localization requires feedback during free flight in Drosophila melanogaster. J Exp Biol 206:843–855

    Article  PubMed  Google Scholar 

  • Hallem EA, Ho MG, Carlson JR (2004) The molecular basis of odor coding in the Drosophila antenna. Cell 117:965–979

    Article  PubMed  CAS  Google Scholar 

  • Hammer M (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366:59–63

    Article  Google Scholar 

  • Hartlieb E (1996) Olfactory conditioning in the moth Heliothis virescens. Naturwissenschaften 83:87–88

    CAS  Google Scholar 

  • Heisenberg M, Borst A, Wagner S, Byers D (1985) Drosophila mushroom body mutants are deficient in olfactory learning. J Neurogenet 2:1–30

    PubMed  CAS  Google Scholar 

  • Holliday M, Hirsch J (1986) Excitatory conditioning of individual Drosophila melanogaster. J Exp Psychol: Anim Behav Process 12(2):131–142

    Article  CAS  Google Scholar 

  • Ishimoto H, Tanimura T (2004) Molecular neurophysiology of taste in Drosophila. Cell Mol Life Sci 61(1):10–18

    Article  PubMed  CAS  Google Scholar 

  • Isabel G, Pascual A, Preat T (2004) Exclusive consolidated memory phases in Drosophila. Science 304:1024–1027

    Article  PubMed  CAS  Google Scholar 

  • Laloi D, Sandoz JC, Picard-Nizou AL, Marchesi A, Pouvreau A, Taséi JN, Poppy G, Pham-Delègue MH (1998) Olfactory conditioning of the proboscis extension in bumble bees. Entomol Exp Appl 90:123–1

    Article  Google Scholar 

  • Laloi D (1999) Reconnaissance d’odeurs complexes par l’abeille domestique (Apis mellifera L.) et le bourdon (Bombus terrestris L.): facteurs épigénétiques et génétiques de la plasticité comportementale. PhD Thesis, Paris XI University, Orsay, France

  • Lambin M, Déglise P, Gauthier M (2005) Antennal movements as indicators of odor detection by worker honeybees. Apidologie 36:119–126

    Article  Google Scholar 

  • Lent DD, Kwon HW (2004) Antennal movements reveal associative learning in the American cockroach Periplaneta americana. J Exp Biol 207:369–375

    Article  PubMed  Google Scholar 

  • Marella S, Fischler W, Kong P, Asgarian S, Rueckert E, Scott K (2006) Imaging taste responses in the fly brain reveals a functional map of taste category and behaviour. Neuron 49:285–295

    Article  PubMed  CAS  Google Scholar 

  • Medioni J, Cadieu N, Vaysse G (1978) Divergent selection for the rapid acquisition of conditioning in Drosophila (Drosophila melanogaster). C R Soc Biol 172(5):961–967

    CAS  Google Scholar 

  • Menzel R, Bitterman ME (1983) Learning by honeybees in an unnatural situation. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York, pp 206–215

    Google Scholar 

  • Menzel R (2001) Searching for memory trace in a mini-brain, the honeybee. Learn Mem 8(2):53–62

    Article  PubMed  CAS  Google Scholar 

  • Milosevic NJ (1999) Dunce and amnesiac gene effect on signal learning in fruit flies Drosophila melanogaster: experiments with odors. Russ J Genet 35(2):157–163

    CAS  Google Scholar 

  • Müller U (2002) Learning in honeybees: from molecules to behaviour. Zoology 105:313–320

    Article  PubMed  Google Scholar 

  • Pascual A, Preat T (2001) Localization of long-term memory within the Drosophila mushroom body. Science 294:1115–1117

    Article  PubMed  CAS  Google Scholar 

  • Preat T (1999) Testing associative learning in Drosophila. In: Crusio WE, Gerlai RT (eds) Handbook of molecular-genetic techniques for brain and behaviour research (Techniques in the behavioural and neuronal sciences), vol 13. Elsevier, Amsterdam, pp 79–126

  • Quinn WG, Harris WA, Benzer S (1974) Conditioned behaviour in Drosophila melanogaster. Proc Natl Acad Sci USA 71(3):708–712

    Article  PubMed  CAS  Google Scholar 

  • Ray S, Ferneyhough B (1999) Behavioral development and olfactory learning in the honeybee (Apis mellifera). Dev Psychobiol 34(1):21–27

    Article  PubMed  CAS  Google Scholar 

  • Riesmensperger T, Völler T, Stock P, Buchner E, Fiala A (2005) Punishment prediction by dopaminergic neurons in Drosophila. Curr Biol 15:1953–1960

    Article  Google Scholar 

  • Sandoz JC, Roger B, Pham-Delègue MH (1995) Olfactory learning and memory in the honeybee: comparison of different classical procedures of the proboscis extension response. CR Acad Sci III 318:749–755

    CAS  Google Scholar 

  • Sandoz JC, Hammer M, Menzel R (2002) Side-specificity of olfactory learning in the honeybee: US input side. Learn Mem 9(5):337–348

    Article  PubMed  Google Scholar 

  • Scheiner R, Barnert M, Erber J (2003) Variation in water and sucrose responsiveness during the foraging season affects proboscis extension learning in honey bees. Apidologie 34:67–72

    Article  Google Scholar 

  • Schwaerzel M, Monastirioti M, Scholz H, Friggi-Grelin F, Birman S, Heisenberg M (2003) Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci 23(33):10495–10502

    PubMed  CAS  Google Scholar 

  • Scott K (2005) Taste recognition: food for thought. Neuron 48:455–464

    Article  PubMed  CAS  Google Scholar 

  • Skiri HT, Stranden M, Sandoz JC, Menzel R, Mustaparta H (2004) Associative learning of plant odorants activating the same or different receptor neurones in the moth Heliothis virescens. J Exp Biol 208:787–7

    Article  Google Scholar 

  • Tempel BL, Bonini N, Dawson DR, Quinn WG (1983) Reward learning in normal and mutant Drosophila. Psychology 80:1482–1486

    CAS  Google Scholar 

  • Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 157:263–277

    Article  PubMed  CAS  Google Scholar 

  • Tully T, Preat T, Boynton SC, Del Vecchio M (1994) Genetic dissection of consolidated memory in Drosophila. Cell 79:35–47

    Article  PubMed  CAS  Google Scholar 

  • Vargo M, Hirsch J (1982) Central excitation in the fruit fly (Drosophila melanogaster). J Comp Physiol Psychol 96(3):452–459

    Article  PubMed  CAS  Google Scholar 

  • Vaysse G, Médioni J (1973) Premières expériences sur la gustation tarsale chez Drosophila melanogaster: stimulation par le saccharose. C R Soc Biol 167(3–4):560–564

    CAS  Google Scholar 

  • Vaysse G, Médioni J (1976) Further experiments on the conditioning and pseudoconditioning of the tarsal reflex in the Drosophila (Drosophila melanogaster): effect of low intensity electric shocks. C R Soc Biol 170(6):1290–1304

    Google Scholar 

  • Vaysse G (1982) Etude du réflexe tarsal et de son inhibition conditionnée chez Drosophila melanogaster: déterminants génétiques et épigénétiques. PhD Thesis, Paul Sabatier University, Toulouse, France

  • Wang Z, Singhvi A, Kong P, Scott K (2004) Taste representations in the Drosophila brain. Cell 117(7):981–991

    Article  PubMed  CAS  Google Scholar 

  • Yu D, Ponomarev A, Davis RL (2004) Altered representation of the spatial code for odors after olfactory classical conditioning: memory trace formation by synaptic recruitment. Neuron 42:437–449

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall Uppler Saddle River, NJ, p 663

    Google Scholar 

  • Zars T, Fischer M, Schulz R, Heisenberg M (2000) Localization of a short-term memory in Drosophila. Science 288(5466):672–675

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was started at the “Laboratoire de Neurobiologie Comparée des Invertébrés”, INRA and completed at the laboratory “Développement, Évolution et Plasticité du Système Nerveux”, CNRS. The authors thank Philippe Vernier for his scientific support to the project, David Laloi, Jean-Christophe Sandoz and Isabelle Bonod for sharing their experience and ideas with the conditioned proboscis activity protocol, Michel Chaminade, Jean-Yves Tiercelin and Pascal Abbas for installation, adaptation and maintenance of the system, Tazu Aoki and Guillaume Isabel for fruitful discussion and Niki Scaplehorn for linguistic advice. This study was supported in part by the “Agence Nationale pour la Recherche” and “the Fondation Bettencourt Schueller”, and Marie-Ange Chabaud was supported by the “Ecole Doctorale Sociétés et Vivant”, option “Biologie du Comportement”, at the University Paris 13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laure Kaiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chabaud, MA., Devaud, JM., Pham-Delègue, MH. et al. Olfactory conditioning of proboscis activity in Drosophila melanogaster . J Comp Physiol A 192, 1335–1348 (2006). https://doi.org/10.1007/s00359-006-0160-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0160-3

Keywords

Navigation