Skip to main content

Advertisement

Log in

How silent is the brain: is there a “dark matter” problem in neuroscience?

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Evidence from a variety of recording methods suggests that many areas of the brain are far more sparsely active than commonly thought. Here, we review experimental findings pointing to the existence of neurons which fire action potentials rarely or only to very specific stimuli. Because such neurons would be difficult to detect with the most common method of monitoring neural activity in vivoextracellular electrode recording—they could be referred to as “dark neurons,” in analogy to the astrophysical observation that much of the matter in the universe is undetectable, or dark. In addition to discussing the evidence for largely silent neurons, we review technical advances that will ultimately answer the question: how silent is the brain?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, Cambridge

    Google Scholar 

  • Abeles M, Gerstein GL (1988) Detecting spatiotemporal firing patterns among simultaneously recorded single neurons. J Neurophysiol 60:909–924

    PubMed  CAS  Google Scholar 

  • Amassian VE (1953) Evoked single cortical unit activity in the somatic sensory areas. Electroencephalogr Clin Neurophysiol Suppl 5:415–438

    Article  CAS  Google Scholar 

  • Barlow HB (1972) Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1:371–394

    Article  PubMed  CAS  Google Scholar 

  • Beloozerova IN, Sirota MG, Swadlow HA (2003) Activity of different classes of neurons of the motor cortex during locomotion. J Neurosci 23:1087–1097

    PubMed  CAS  Google Scholar 

  • Binzegger T, Douglas RJ, Martin KA (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24:8441–8453

    Article  PubMed  CAS  Google Scholar 

  • Blanche TJ, Spacek MA, Hetke JF, Swindale NV (2005) Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording. J Neurophysiol 93:2987–3000

    Article  PubMed  Google Scholar 

  • Brecht M, Sakmann B (2002) Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex. J Physiol 543:49–70

    Article  PubMed  CAS  Google Scholar 

  • Brecht M, Roth A, Sakmann B (2003) Dynamic receptive fields of reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex. J Physiol 553:243–265

    Article  PubMed  CAS  Google Scholar 

  • Brecht M, Fee MS, Garaschuk O, Helmchen F, Margrie TW, Svoboda K, Osten P (2004) Novel approaches to monitor and manipulate single neurons in vivo. J Neurosci 24:9223–9227

    Article  PubMed  CAS  Google Scholar 

  • Chadderton P, Margrie TW, Hausser M (2004) Integration of quanta in cerebellar granule cells during sensory processing. Nature 428:856–860

    Article  PubMed  CAS  Google Scholar 

  • Diamond ME, Armstrong-James M, Ebner FF (1993) Experience-dependent plasticity in adult rat barrel cortex. Proc Natl Acad Sci USA 90(5):2082-2086

    Article  PubMed  CAS  Google Scholar 

  • DeWeese MR, Wehr M, Zador AM (2003) Binary spiking in auditory cortex. J Neurosci 23:7940–7949

    PubMed  CAS  Google Scholar 

  • Fiete IR, Hahnloser RH, Fee MS, Seung HS (2004) Temporal sparseness of the premotor drive is important for rapid learning in a neural network model of birdsong. J Neurophysiol 92:2274–2282

    Article  PubMed  Google Scholar 

  • Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2:1527–1537

    PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419

    Article  PubMed  CAS  Google Scholar 

  • Gray CM, Maldonado PE, Wilson M, McNaughton B (1995) Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J Neurosci Methods 63:43–54

    Article  PubMed  CAS  Google Scholar 

  • Gross CG (2002) Genealogy of the “grandmother cell”. Neuroscientist 8:512–518

    Article  PubMed  Google Scholar 

  • Hahnloser RH, Kozhevnikov AA, Fee MS (2002) An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419:65–70

    Article  PubMed  CAS  Google Scholar 

  • Hasan MT, Friedrich RW, Euler T, Larkum ME, Giese G, Both M, Duebel J, Waters J, Bujard H, Griesbeck O, Tsien RY, Nagai T, Miyawaki A, Denk W (2004) Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS Biol 2:e163

    Article  PubMed  Google Scholar 

  • Heeger DJ, Huk AC, Geisler WS, Albrecht DG (2000) Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? Nat Neurosci 3:631–633

    Article  PubMed  CAS  Google Scholar 

  • Henze DA, Borhegyi Z, Csicsvari J, Mamiya A, Harris KD, Buzsaki G (2000) Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J Neurophysiol 84:390–400

    PubMed  CAS  Google Scholar 

  • Holt GR, Koch C (1999) Electrical interactions via the extracellular potential near cell bodies. J Comput Neurosci 6:169–184

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH (1957) Tungsten microelectrode for recording from single units. Science 125:549–550

    Article  PubMed  Google Scholar 

  • Lennie P (2003) The cost of cortical computation. Curr Biol 13:493–497

    Article  PubMed  CAS  Google Scholar 

  • Margrie TW, Brecht M, Sakmann B (2002) In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch 444:491–498

    Article  PubMed  CAS  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470

    PubMed  CAS  Google Scholar 

  • Maunsell JH, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49:1127–1147

    PubMed  CAS  Google Scholar 

  • Mountcastle VB, Davies PW, Berman AL (1957) Response properties of neurons of cat’s somatic sensory cortex to peripheral stimuli. J Neurophysiol 20:374–407

    PubMed  CAS  Google Scholar 

  • Ohki K, Chung S, Ch’ng YH, Kara P, Reid RC (2005) Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433:597–603

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175

    Article  PubMed  Google Scholar 

  • Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14:481–487

    Article  PubMed  CAS  Google Scholar 

  • Olshausen BA, Field DJ (2005) How close are we to understanding v1? Neural Comput 17:1665–1699

    Article  PubMed  Google Scholar 

  • Pouget A, Dayan P, Zemel RS (2003) Inference and computation with population codes. Annu Rev Neurosci 26:381–410

    Article  PubMed  CAS  Google Scholar 

  • Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435:1102–1107

    Article  PubMed  CAS  Google Scholar 

  • Raichle ME, Gusnard DA (2002) Appraising the brain’s energy budget. Proc Natl Acad Sci USA 99:10237–10239

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1962) Electrophysiology of a dendritic neuron model. Biophys J 2(2Pt 2):145–167

    Article  PubMed  CAS  Google Scholar 

  • Rieke F (1997) Spikes: exploring the neural code. MIT Press, Cambridge

    Google Scholar 

  • Robinson DA (1968) The electrical properties of metal microelectrodes. Proc IEEE 56:1065–1071

    Article  CAS  Google Scholar 

  • Rosenblatt F (1962) Principles of neurodynamics. Spartan, New York

    Google Scholar 

  • Segev R, Shapira Y, Benveniste M, Ben-Jacob E (2001) Observations and modeling of synchronized bursting in two-dimensional neural networks. Phys Rev E Stat Nonlin Soft Matter Phys 64:011920

    PubMed  CAS  Google Scholar 

  • Segev R, Goodhouse J, Puchalla J, Berry MJ II (2004) Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nat Neurosci 7:1154–1161

    Article  PubMed  CAS  Google Scholar 

  • Sholl DA (1956) The organization of the cerebral cortex. Methuen, London

    Google Scholar 

  • Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24:49–65, 111–125

    Google Scholar 

  • Song S, Sjostrom PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3:e68

    Article  PubMed  Google Scholar 

  • Stepanyants A, Hof PR, Chklovskii DB (2002) Geometry and structural plasticity of synaptic connectivity. Neuron 34:275–288

    Article  PubMed  CAS  Google Scholar 

  • Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 100:7319–7324

    Article  PubMed  CAS  Google Scholar 

  • Sullivan MR, Nimmerjahn A, Sarkisov DV, Helmchen F, Wang SS (2005) In vivo calcium imaging of circuit activity in cerebellar cortex. J Neurophysiol 94:1636–1644

    Article  PubMed  CAS  Google Scholar 

  • Swadlow HA (1998) Neocortical efferent neurons with very slowly conducting axons: strategies for reliable antidromic identification. J Neurosci Methods 79:131–141

    Article  PubMed  CAS  Google Scholar 

  • Swadlow HA, Hicks TP (1996) Somatosensory cortical efferent neurons of the awake rabbit: latencies to activation via supra–and subthreshold receptive fields. J Neurophysiol 75:1753–1759

    PubMed  CAS  Google Scholar 

  • Thompson LT, Best PJ (1989) Place cells and silent cells in the hippocampus of freely-behaving rats. J Neurosci 9:2382–2390

    PubMed  CAS  Google Scholar 

  • Towe AL, Harding GW (1970) Extracellular microelectrode sampling bias. Exp Neurol 29:366–381

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, Wong AM, Flores J, Vosshall LB, Axel R (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112:271–282

    Article  PubMed  CAS  Google Scholar 

  • Yuste R, Maclean JN, Smith J, Lansner A (2005) Opinion: the cortex as a central pattern generator. Nat Rev Neurosci 6:477–483

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sam Wang for fruitful discussions during the preparation of this manuscript, and two anonymous reviewers for their helpful comments. We also thank Joe Goodhouse and Michael J. Berry II for allowing us to use the figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronen Segev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoham, S., O’Connor, D.H. & Segev, R. How silent is the brain: is there a “dark matter” problem in neuroscience?. J Comp Physiol A 192, 777–784 (2006). https://doi.org/10.1007/s00359-006-0117-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0117-6

Keywords

Navigation