Skip to main content
Log in

Preoperative fMRI in tumour surgery

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Minimally invasive resection of brain tumours aims at removing as much pathological tissue as possible while preserving essential brain functions. Therefore, the precise spatial relationship between the lesion and adjacent functionally essential brain parenchyma needs to be known. Functional magnetic resonance imaging (fMRI) is increasingly being used for this purpose because of its non-invasiveness, its relatively high spatial resolution and the preoperative availability of the results. In this review, the goals of fMRI at various key points during the management of patients with a brain tumour are discussed. Further, several practical aspects associated with fMRI for motor and language functioning are summarised, and the validation of the fMRI results with standard invasive mapping techniques is addressed. Next, several important pitfalls and limitations that warrant careful interpretations of the fMRI results are highlighted. Finally, two important future perspectives of presurgical fMRI are emphasised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ojemann JG, Ojemann GA, Lettich E (2002) Cortical stimulation mapping of language cortex by using a verb generation task: effects of learning and comparison to mapping based on object naming. J Neurosurg 97:33–38

    Article  PubMed  Google Scholar 

  2. Desmond JE, Sum JM, Wagner AD, Demb JB, Shear PK, Glover GH et al (1995) Functional MRI measurement of language lateralization in Wada-tested patients. Brain 118:1411–1419

    Article  PubMed  Google Scholar 

  3. Hund-Georgiadis M, Lex U, Friederici AD, von Cramon DY (2002) Non-invasive regime for language lateralization in right- and left-handers by means of functional MRI and dichotic listening. Exp Brain Res 145:166–176

    Article  PubMed  Google Scholar 

  4. Atlas SW, Howard RS 2nd, Maldjian J, Alsop D, Detre JA, Listerud J et al (1996) Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery 38:329–338

    Article  PubMed  CAS  Google Scholar 

  5. FitzGerald DB, Cosgrove GR, Ronner S, Jiang H, Buchbinder BR, Belliveau JW et al (1997) Location of language in the cortex: a comparison between functional MR imaging and electrocortical stimulation. AJNR 18:1529–1539

    PubMed  CAS  Google Scholar 

  6. Lehericy S, Duffau H, Cornu P, Capelle L, Pidoux B, Carpentier A et al (2000) Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors. J Neurosurg 92:589–598

    Article  PubMed  CAS  Google Scholar 

  7. Jack CRJ, Thompson RM, Butts RK, Sharbrough FW, Kelly PJ, Hanson DP et al (1994) Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. Radiology 190:85–92

    PubMed  Google Scholar 

  8. Binder JR, Swanson SJ, Hammeke TA, Morris GL, Mueller WM, Fischer M et al (1996) Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology 46:978–984

    PubMed  CAS  Google Scholar 

  9. Deblaere K, Boon PA, Vandemaele P, Tieleman A, Vonck K, Vingerhoets G et al (2004) MRI language dominance assessment in epilepsy patients at 1.0 T: region of interest analysis and comparison with intracarotid amytal testing. Neuroradiology 46:413–420

    Article  PubMed  CAS  Google Scholar 

  10. Holodny AI, Schulder M, Liu WC, Wolko J, Maldjian JA, Kalnin AJ (2000) The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. AJNR 21:1415–1422

    PubMed  CAS  Google Scholar 

  11. Petrella JR, Shah LM, Harris KM, Friedman AH, George TM, Sampson JH et al (2006) Preoperative functional MR imaging localization of language and motor areas: effect on therapeutic decision making in patients with potentially resectable brain tumors. Radiology 240:793–802

    Article  PubMed  Google Scholar 

  12. Ulmer JL, Krouwer HG, Mueller WM, Ugurel MS, Kocak M, Mark LP (2003) Pseudo-reorganization of language cortical function at fMR imaging: a consequence of tumor-induced neurovascular uncoupling. AJNR 24:213–217

    PubMed  Google Scholar 

  13. Schreiber A, Hubbe U, Ziyeh S, Hennig J (2000) The influence of gliomas and nonglial space-occupying lesions on blood-oxygen-level-dependent contrast enhancement. AJNR 21:1055–1063

    PubMed  CAS  Google Scholar 

  14. Lee CC, Ward HA, Sharbrough FW, Meyer FB, Marsh WR, Raffel C et al (1999) Assessment of functional MR imaging in neurosurgical planning. AJNR 20:1511–1519

    PubMed  CAS  Google Scholar 

  15. Haberg A, Kvistad KA, Unsgard G, Haraldseth O (2004) Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with primary brain tumors: clinical application and outcome. Neurosurgery 54:902–914, discussion 914–5

    Article  PubMed  Google Scholar 

  16. Krishnan R, Raabe A, Hattingen E, Szelenyi A, Yahya H, Hermann E et al (2004) Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery 55:904–914, discussion 914–5

    Article  PubMed  Google Scholar 

  17. Stippich C, Hofmann R, Kapfer D, Hempel E, Heiland S, Jansen O et al (1999) Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile stimulation using functional magnetic resonance imaging. Neurosci Lett 277:25–28

    Article  PubMed  CAS  Google Scholar 

  18. Desmond JE, Annabel Chen SH (2002) Ethical issues in the clinical application of fMRI: factors affecting the validity and interpretation of activations. Brain Cogn 50:482–497

    Article  PubMed  Google Scholar 

  19. Nelson L, Lapsiwala S, Haughton VM, Noyes J, Sadrzadeh AH, Moritz CH et al (2002) Preoperative mapping of the supplementary motor area in patients harboring tumors in the medial frontal lobe. J Neurosurg 97:1108–1114

    Article  PubMed  Google Scholar 

  20. Zentner J, Hufnagel A, Pechstein U, Wolf HK, Schramm J (1996) Functional results after resective procedures involving the supplementary motor area. J Neurosurg 85:542–549

    Article  PubMed  CAS  Google Scholar 

  21. Krainik A, Lehericy S, Duffau H, Capelle L, Chainay H, Cornu P et al (2003) Postoperative speech disorder after medial frontal surgery: role of the supplementary motor area. Neurology 60:587–594

    PubMed  CAS  Google Scholar 

  22. O’Shea JP, Whalen S, Branco DM, Petrovich NM, Knierim KE, Golby AJ (2006) Integrated image- and function-guided surgery in eloquent cortex: a technique report. Int J Med Robot 2:75–83

    PubMed  Google Scholar 

  23. Jannin P, Fleig OJ, Seigneuret E, Grova C, Morandi X, Scarabin JM (2000) A data fusion environment for multimodal and multi-informational neuronavigation. Comput Aided Surg 5:1–10

    Article  PubMed  CAS  Google Scholar 

  24. Rasmussen IAJ, Lindseth F, Rygh OM, Berntsen EM, Selbekk T, Xu J et al (2007) Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data. Acta Neurochir (Wien) 149:365–378

    Article  Google Scholar 

  25. Turner R, Le Bihan D, Moonen CT, Despres D, Frank J (1991) Echo-planar time course MRI of cat brain oxygenation changes. Magn Reson Med 22:159–166

    Article  PubMed  CAS  Google Scholar 

  26. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    Article  PubMed  CAS  Google Scholar 

  27. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397

    Article  PubMed  CAS  Google Scholar 

  28. Fujiwara N, Sakatani K, Katayama Y, Murata Y, Hoshino T, Fukaya C et al (2004) Evoked-cerebral blood oxygenation changes in false-negative activations in BOLD contrast functional MRI of patients with brain tumors. Neuroimage 21:1464–1471

    Article  PubMed  Google Scholar 

  29. Leybaert L (2005) Neurobarrier coupling in the brain: a partner of neurovascular and neurometabolic coupling? J Cereb Blood Flow Metab 25:2–16

    Article  PubMed  CAS  Google Scholar 

  30. Alkadhi H, Kollias SS, Crelier GR, Golay X, Hepp-Reymond MC, Valavanis A (2000) Plasticity of the human motor cortex in patients with arteriovenous malformations: a functional MR imaging study. AJNR 21:1423–1433

    PubMed  CAS  Google Scholar 

  31. Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296

    Article  PubMed  CAS  Google Scholar 

  32. Penfield W, Rasmussen T (1950) The cerebral cortex of man. MacMillan, New York

  33. Tieleman A, Seurinck R, Deblaere K, Vandemaele P, Vingerhoets G, Achten E (2005) Stimulus pacing affects the activation of the medial temporal lobe during a semantic classification task: an fMRI study. Neuroimage 26:565–572

    Article  PubMed  Google Scholar 

  34. Papke K, Reimer P, Renger B, Schuierer G, Knecht S, Schulz M et al (2000) Optimized activation of the primary sensorimotor cortex for clinical functional MR imaging. AJNR 21:395–401

    PubMed  CAS  Google Scholar 

  35. Golaszewski SM, Siedentopf CM, Koppelstaetter F, Fend M, Ischebeck A, Gonzalez-Felipe V et al (2006) Human brain structures related to plantar vibrotactile stimulation: a functional magnetic resonance imaging study. Neuroimage 29:923–929

    Article  PubMed  Google Scholar 

  36. Gasser TG, Sandalcioglu EI, Wiedemayer H, Hans V, Gizewski E, Forsting M et al (2004) A novel passive functional MRI paradigm for preoperative identification of the somatosensory cortex. Neurosurg Rev 27:106–112

    Article  PubMed  Google Scholar 

  37. Stippich C, Ochmann H, Sartor K (2002) Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging. Neurosci Lett 331:50–54

    Article  PubMed  CAS  Google Scholar 

  38. Yetkin FZ, Mueller WM, Morris GL, McAuliffe TL, Ulmer JL, Cox RW et al (1997) Functional MR activation correlated with intraoperative cortical mapping. AJNR 18:1311–1315

    PubMed  CAS  Google Scholar 

  39. Dymarkowski S, Sunaert S, Van Oostende S, Van Hecke P, Wilms G, Demaerel P et al (1998) Functional MRI of the brain: localisation of eloquent cortex in focal brain lesion therapy. Eur Radiol 8:1573–1580

    Article  PubMed  CAS  Google Scholar 

  40. Achten E, Jackson GD, Cameron JA, Abbott DF, Stella DL, Fabinyi GC (1999) Presurgical evaluation of the motor hand area with functional MR imaging in patients with tumors and dysplastic lesions. Radiology 210:529–538

    PubMed  CAS  Google Scholar 

  41. Hirsch J, Ruge MI, Kim KH, Correa DD, Victor JD, Relkin NR et al (2000) An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions. Neurosurgery 47:711–721, discussion 721–2

    Article  PubMed  CAS  Google Scholar 

  42. Roessler K, Donat M, Lanzenberger R, Novak K, Geissler A, Gartus A et al (2005) Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome. J Neurol Neurosurg Psychiatry 76:1152–1157

    Article  PubMed  CAS  Google Scholar 

  43. Naidich TP, Hof PR, Gannon PJ, Yousry TA, Yousry (2001) Anatomic substrates of language: emphasizing speech. Neuroimaging Clin N Am 11:305–341

    PubMed  CAS  Google Scholar 

  44. Noppeney U, Josephs O, Hocking J, Price CJ, Friston KJ (2008) The effect of prior visual information on recognition of speech and sounds. Cereb Cortex 18:598–609

    Article  PubMed  Google Scholar 

  45. Lurito JT, Dzemidzic M (2001) Determination of cerebral hemisphere language dominance with functional magnetic resonance imaging. Neuroimaging Clin N Am 11:355–363

    PubMed  CAS  Google Scholar 

  46. Rutten GJ, van Rijen PC, van Veelen CW, Ramsey NF (1999) Language area localization with three-dimensional functional magnetic resonance imaging matches intrasulcal electrostimulation in Broca’s area. Ann Neurol 46:405–408

    Article  PubMed  CAS  Google Scholar 

  47. Majos A, Tybor K, Stefanczyk L, Goraj B (2005) Cortical mapping by functional magnetic resonance imaging in patients with brain tumors. Eur Radiol 15:1148–1158

    Article  PubMed  Google Scholar 

  48. Deblaere K, Backes WH, Hofman P, Vandemaele P, Boon PA, Vonck K et al (2002) Developing a comprehensive presurgical functional MRI protocol for patients with intractable temporal lobe epilepsy: a pilot study. Neuroradiology 44:667–673

    Article  PubMed  CAS  Google Scholar 

  49. Roux FE, Boulanouar K, Lotterie JA, Mejdoubi M, LeSage JP, Berry I (2003) Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery 52:1335–1345, discussion 1345–7

    Article  PubMed  Google Scholar 

  50. Mueller WM, Yetkin FZ, Hammeke TA, Morris GL 3rd, Swanson SJ, Reichert K et al (1996) Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery 39:515–520, discussion 520–1

    Article  PubMed  CAS  Google Scholar 

  51. Benson RR, FitzGerald DB, LeSueur LL, Kennedy DN, Kwong KK, Buchbinder BR et al (1999) Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology 52:798–809

    PubMed  CAS  Google Scholar 

  52. Fernandez G, Specht K, Weis S, Tendolkar I, Reuber M, Fell J et al (2003) Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology 60:969–975

    PubMed  CAS  Google Scholar 

  53. Amunts K, Schleicher A, Burgel U, Mohlberg H, Uylings HB, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341

    Article  PubMed  CAS  Google Scholar 

  54. Amunts K, Weiss PH, Mohlberg H, Pieperhoff P, Eickhoff S, Gurd JM et al (2004) Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space–the roles of Brodmann areas 44 and 45. Neuroimage 22:42–56

    Article  PubMed  Google Scholar 

  55. Price CJ (2000) The anatomy of language: contributions from functional neuroimaging. J Anat 197:335–359

    Article  PubMed  Google Scholar 

  56. Rutten GJ, Ramsey NF, van Rijen PC, Noordmans HJ, van Veelen CW (2002) Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol 51:350–360

    Article  PubMed  CAS  Google Scholar 

  57. Rutten GJ, Ramsey NF, van Rijen PC, van Veelen CW (2002) Reproducibility of fMRI-determined language lateralization in individual subjects. Brain Lang 80:421–437

    Article  PubMed  CAS  Google Scholar 

  58. Abduljalil AM, Kangarlu A, Yu Y, Robitaille PM (1999) Macroscopic susceptibility in ultra high field MRI. II: Acquisition of spin echo images from the human head. J Comput Assist Tomogr 23:842–844

    Article  PubMed  CAS  Google Scholar 

  59. Hou BL, Bradbury M, Peck KK, Petrovich NM, Gutin PH, Holodny AI (2006) Effect of brain tumor neovasculature defined by rCBV on BOLD fMRI activation volume in the primary motor cortex. Neuroimage 32:489–497

    Article  PubMed  Google Scholar 

  60. Sunaert S (2006) Presurgical planning for tumor resectioning. J Magn Reson Imaging 23:887–905

    Article  PubMed  Google Scholar 

  61. O’Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F, Kobal G et al (2000) Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex. Neuroreport 11:893–897

    Article  PubMed  Google Scholar 

  62. Hajnal JV, Myers R, Oatridge A, Schwieso JE, Young IR, Bydder GM (1994) Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31:283–291

    Article  PubMed  CAS  Google Scholar 

  63. Krings T, Reinges MH, Erberich S, Kemeny S, Rohde V, Spetzger U et al (2001) Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatr 70:749–760

    Article  PubMed  CAS  Google Scholar 

  64. Devlin JT, Russell RP, Davis MH, Price CJ, Wilson J, Moss HE et al (2000) Susceptibility-induced loss of signal: comparing PET and fMRI on a semantic task. Neuroimage 11:589–600

    Article  PubMed  CAS  Google Scholar 

  65. Kim MJ, Holodny AI, Hou BL, Peck KK, Moskowitz CS, Bogomolny DL et al (2005) The effect of prior surgery on blood oxygen level-dependent functional MR imaging in the preoperative assessment of brain tumors. AJNR 26:1980–1985

    PubMed  Google Scholar 

  66. Ugurbil K, Hu X, Chen W, Zhu XH, Kim SG, Georgopoulos (1999) A functional mapping in the human brain using high magnetic fields. Philos Trans R Soc Lond B Biol Sci 354:1195–1213

    Article  PubMed  CAS  Google Scholar 

  67. Kruger G, Kastrup A, Glover GH (2001) Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 45:595–604

    Article  PubMed  CAS  Google Scholar 

  68. Krasnow B, Tamm L, Greicius MD, Yang TT, Glover GH, Reiss AL et al (2003) Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective processing. Neuroimage 18:813–826

    Article  PubMed  CAS  Google Scholar 

  69. Yang Y, Wen H, Mattay VS, Balaban RS, Frank JA, Duyn JH (1999) Comparison of 3D BOLD functional MRI with spiral acquisition at 1.5 and 4.0 T. Neuroimage 9:446–451

    Article  PubMed  CAS  Google Scholar 

  70. Hoenig K, Kuhl CK, Scheef L (2005) Functional 3.0-T MR assessment of higher cognitive function: are there advantages over 1.5-T imaging? Radiology 234:860–868

    Article  PubMed  Google Scholar 

  71. Tieleman A, Vandemaele P, Seurinck R, Deblaere K, Achten E (2007) Comparison between functional magnetic resonance imaging at 1.5 and 3 Tesla: effect of increased field strength on 4 paradigms used during presurgical work-up. Invest Radiol 42:130–138

    Article  PubMed  Google Scholar 

  72. Jovicich J, Norris DG (1999) Functional MRI of the human brain with GRASE-based BOLD contrast. Magn Reson Med 41:871–876

    Article  PubMed  CAS  Google Scholar 

  73. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  PubMed  CAS  Google Scholar 

  74. Weiger M, Pruessmann KP, Osterbauer R, Bornert P, Boesiger P, Jezzard P (2002) Sensitivity-encoded single-shot spiral imaging for reduced susceptibility artifacts in BOLD fMRI. Magn Reson Med 48:860–866

    Article  PubMed  Google Scholar 

  75. Preston AR, Thomason ME, Ochsner KN, Cooper JC, Glover GH (2004) Comparison of spiral-in/out and spiral-out BOLD fMRI at 1.5 and 3 T. Neuroimage 21:291–301

    Article  PubMed  Google Scholar 

  76. Nimsky C, Ganslandt O, Merhof D, Sorensen AG, Fahlbusch R (2006) Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking. Neuroimage 30:1219–1229

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Tieleman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tieleman, A., Deblaere, K., Van Roost, D. et al. Preoperative fMRI in tumour surgery. Eur Radiol 19, 2523–2534 (2009). https://doi.org/10.1007/s00330-009-1429-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1429-z

Keywords

Navigation