Skip to main content

Advertisement

Log in

Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Neutrophils play an essential role in host defense against microbial pathogens and in the inflammatory reaction. Upon activation, neutrophils produce superoxide anion (\({\text{O}}_2 ^{ - .} \)), which generates other reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hydroxyl radical (\({\text{OH}}^{ \bullet } \)) and hypochlorous acid (HOCl), together with microbicidal peptides and proteases. The enzyme responsible for \({\text{O}}_2 ^{ - .} \) production is called the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase or respiratory burst oxidase. This multicomponent enzyme system is composed of two trans-membrane proteins (p22phox and gp91phox/NOX2, which form the cytochrome b558), three cytosolic proteins (p47phox, p67phox, p40phox) and a GTPase (Rac1 or Rac2), which assemble at membrane sites upon cell activation. NADPH oxidase activation in phagocytes can be induced by a large number of soluble and particulate factors. Three major events accompany NAPDH oxidase activation: (1) protein phosphorylation, (2) GTPase activation, and (3) translocation of cytosolic components to the plasma membrane to form the active enzyme. Actually, the neutrophil NADPH oxidase exists in different states: resting, primed, activated, or inactivated. The resting state is found in circulating blood neutrophils. The primed state can be induced by neutrophil adhesion, pro-inflammatory cytokines, lipopolysaccharide, and other agents and has been characterized as a “ready to go” state, which results in a faster and higher response upon exposure to a second stimulus. The active state is found at the inflammatory or infection site. Activation is induced by the pathogen itself or by pathogen-derived formylated peptides and other agents. Finally, inactivation of NADPH oxidase is induced by anti-inflammatory agents to limit inflammation. Priming is a “double-edged sword” process as it contributes to a rapid and efficient elimination of the pathogens but can also induce the generation of large quantities of toxic ROS by hyperactivation of the NADPH oxidase, which can damage surrounding tissues and participate to inflammation. In order to avoid extensive damage to host tissues, NADPH oxidase priming and activation must be tightly regulated. In this review, we will discuss some of the mechanisms of NADPH oxidase priming in neutrophils and the relevance of this process to physiology and pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223

    Article  PubMed  CAS  Google Scholar 

  2. Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L (2000) Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 80:617–653

    PubMed  CAS  Google Scholar 

  3. Beutler B, Hoebe K, Du X, Ulevitch RJ (2003) How we detect microbes and respond to them: the Toll-like receptors and their transducers. J Leukoc Biol 74:479–485

    Article  PubMed  CAS  Google Scholar 

  4. Babior BM (2000) Phagocytes and oxidative stress. Am J Med 109:33–44

    Article  PubMed  CAS  Google Scholar 

  5. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625

    Article  PubMed  CAS  Google Scholar 

  6. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017

    PubMed  CAS  Google Scholar 

  7. Babior BM (1984) Oxidants from phagocytes: agents of defense and destruction. Blood 64:959–966

    PubMed  CAS  Google Scholar 

  8. Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476

    PubMed  CAS  Google Scholar 

  9. El-Benna J, Dang PM, Gougerot-Pocidalo MA, Elbim C (2005) Phagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses. Arch Immunol Ther Exp (Warsz) 53:199–206

    CAS  Google Scholar 

  10. Chanock SJ, El-Benna J, Smith RM, Babior BM (1994) The respiratory burst oxidase. J Biol Chem 269:24519–24522

    PubMed  CAS  Google Scholar 

  11. Quinn MT, Gauss KA (2004) Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol 76:760–781

    Article  PubMed  CAS  Google Scholar 

  12. Groemping Y, Rittinger K (2005) Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 386:401–416

    Article  PubMed  CAS  Google Scholar 

  13. Roos D, De Boer M, Kuribayashi F, Meischi Weening RS, Segal AW, Ahlin A, Nemet K, Hossle JP, Bernatowska-Matusskiewicz E, Middleton-Price H (1996) Mutations in the X-linked and autosomal recessive forms of chronic granulomatous disease. Blood 87:1663–1681

    PubMed  CAS  Google Scholar 

  14. Walker BAM, Ward PA (1992) Priming and signal transduction in neutrophils. Biol Signals 1:237–249

    Article  PubMed  CAS  Google Scholar 

  15. Hallett MB, Lloyds DL (1995) Neutrophil priming: the cellular signals that say ‘amber’ but not ‘green’. Immunol Today 16:264–268

    Article  PubMed  CAS  Google Scholar 

  16. Downey GP, Fukushima T, Fialkow L, Waddell K (1995) Intracellular signaling in neutrophil priming and activation. Semin Cell Biol 6:345–356

    Article  PubMed  CAS  Google Scholar 

  17. Swain SD, Rohn TT, Quinn MT (2002) Neutrophil priming in host defense: role of oxidants as priming agents. Antioxid Redox Signal 4:69–83

    Article  PubMed  CAS  Google Scholar 

  18. Sheppard FR, Kelher MR, Moore EE, McLaughlin NJ, Banerjee A, Silliman CC (2005) Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J Leukoc Biol 78:1025–1042

    Article  PubMed  CAS  Google Scholar 

  19. Smith JA (1994) Neutrophils, host defense, and inflammation: a double-edged sword. J Leukoc Biol 56:672–686

    PubMed  CAS  Google Scholar 

  20. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  PubMed  CAS  Google Scholar 

  21. Borregaard N, Heiple JM, Simons ER, Clark RA (1983) Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: translocation during activation. J Cell Biol 97:52–61

    Article  PubMed  CAS  Google Scholar 

  22. Kjeldsen L, Sengeløv H, Lollike K, Nielsen MH, Borregaard N (1994) Isolation and characterization of gelatinase granules from human neutrophils. Blood 83:1640–1609

    PubMed  CAS  Google Scholar 

  23. Nisimoto Y, Motalebi S, Han CH, Lambeth JD (1999) The p67(phox) activation domain regulates electron flow from NADPH to flavin in flavocytochrome b(558). J Biol Chem 274:22999–23005

    Article  PubMed  CAS  Google Scholar 

  24. Wientjes FB, Hsuan JJ, Totty NF, Segal AW (1993) p40phox, a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology 3 domains. Biochem J 296:557–561

    PubMed  CAS  Google Scholar 

  25. Tsunawaki S, Mizunari H, Nagata M, Tatsuzawa O, Kuratsuji T (1994) A novel cytosolic component, p40phox, of respiratory burst oxidase associates with p67phox and is absent in patients with chronic granulomatous disease who lack p67phox. Biochem Biophys Res Commun 199:1378–1387

    Article  PubMed  CAS  Google Scholar 

  26. Abo A, Webb MR, Grogan A, Segal AW (1994) Activation of NADPH oxidase involves the dissociation of p21rac from its inhibitory GDP/GTP exchange protein (rhoGDI) followed by its translocation to the plasma membrane. Biochem J 298:585–591

    PubMed  CAS  Google Scholar 

  27. Borregaard N, Kjeldsen L, Sengeløv H, Diamond MS, Springer TA, Anderson HC, Kishimoto TK, Bainton DF (1994) Changes in subcellular localization and surface expression of L-selectin, alkaline phosphatase, and Mac-1 in human neutrophils during stimulation with inflammatory mediators. J Leukoc Biol 56:80–87

    PubMed  CAS  Google Scholar 

  28. Clark RA, Volpp BD, Leidal KG, Nauseef WM (1990) Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J Clin Invest 85:714–721

    Article  PubMed  CAS  Google Scholar 

  29. Quinn MT, Evans T, Loetterle LR, Jesaitis AJ, Bokoch GM (1993) Translocation of Rac correlates with NADPH oxidase activation. Evidence for equimolar translocation of oxidase components. J Biol Chem 268:20983–20987

    PubMed  CAS  Google Scholar 

  30. El Benna J, Ruedi JM, Babior BM (1994) Cytosolic guanine nucleotide-binding protein Rac 2 operates in vivo as a component of the neutrophil respiratory burst oxidase. Transfer of Rac 2 and the cytosolic oxidase components p47 (phox) and p67 (phox) to the submembranous actin cytoskeleton during oxidase activation. J Biol Chem 269:6729–6734

    PubMed  Google Scholar 

  31. El Benna J, Faust LP, Babior BM (1994) The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by proline-directed kinases. J Biol Chem 269:23431–23436

    PubMed  Google Scholar 

  32. El Benna J, Faust LRP, Johnson J, Babior BM (1996) Phosphorylation of the respiratory burst oxidase subunit p47phox as determined by two-dimensional phosphopeptide mapping. Phosphorylation by protein kinase C, protein kinase A and a mitogen activated protein kinase. J Biol Chem 271:6374–6378

    Article  PubMed  Google Scholar 

  33. Groemping Y, Lapouge K, Smerdon SJ, Rittinger K (2003) Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113:343–355

    Article  PubMed  CAS  Google Scholar 

  34. Zhan Y, Virbasius JV, Song X, Pomerleau DP, Zhou W (2002) The p40phox and p47phox PX domains of NADPH oxidase target cell membranes via direct and indirect recruitment by phosphoinositides. J Biol Chem 277:4512–4518

    Article  PubMed  CAS  Google Scholar 

  35. El-Benna J, Dang PM, Gaudry M, Fay M, Morel F, Hakim J, Gougerot-Pocidalo MA (1997) Phosphorylation of the respiratory burst oxidase subunit p67(phox) during human neutrophil activation. Regulation by protein kinase C-dependent and independent pathways. J Biol Chem 272:17204–1728

    Article  CAS  Google Scholar 

  36. Dang PMC, Cross AR, Babior BM (2001) Assembly of the neutrophil respiratory burst oxidase: a direct interaction between p67phox and cytochrome b558. Proc Natl Acad Sci USA 98:3001–3005

    Article  PubMed  CAS  Google Scholar 

  37. Bouin AP, Grandvaux N, Vignais PV, Fuchs A (1998) p40(phox) is phosphorylated on threonine 154 and serine 315 during activation of the phagocyte NADPH oxidase. Implication of a protein kinase C-type kinase in the phosphorylation process. J Biol Chem 273:30097–30103

    Article  PubMed  CAS  Google Scholar 

  38. Kuribayashi F, Nunoi H, Wakamatsu K, Tsunawaki S, Sato K, Ito T, Sumimoto H (2002) The adaptor protein p40(phox) as a positive regulator of the superoxide-producing phagocyte oxidase. EMBO J 21:6312–6320

    Article  PubMed  CAS  Google Scholar 

  39. Suh CI, Stull ND, Li XJ, Tian W, Price MO, Grinstein S, Yaffe MB, Atkinson S, Dinauer MC (2006) The phosphoinositide-binding protein p40phox activates the NADPH oxidase during FcgammaIIA receptor-induced phagocytosis. J Exp Med 203:1915–1925 2006

    Article  PubMed  CAS  Google Scholar 

  40. Ellson CD, Davidson K, Ferguson GJ, O’Connor R, Stephens LR, Hawkins PT (2006) Neutrophils from p40phox−/− mice exhibit severe defects in NADPH oxidase regulation and oxidant-dependent bacterial killing. J Exp Med 203:1927–1937

    Article  PubMed  CAS  Google Scholar 

  41. McPhail LC, Clayton CC, Snyderman R (1984) The NADPH oxidase of human polymorphonuclear leukocytes. Evidence for regulation by multiple signals. J Biol Chem 259:5768–5775

    PubMed  CAS  Google Scholar 

  42. Finkel TH, Pabst MJ, Suzuki H, Guthrie LA, Forehand JR, Phillips WA, Johnston RB Jr (1987) Priming of neutrophils and macrophages for enhanced release of superoxide anion by the calcium ionophore ionomycin. Implications for regulation of the respiratory burst. J Biol Chem 262:12589–12596

    PubMed  CAS  Google Scholar 

  43. Daniels RH, Elmore MA, Hill ME, Shimizu Y, Lackie JM, Finnen MJ (1994) Priming of the oxidative burst in human neutrophils by physiological agonists or cytochalasin B results from the recruitment of previously non-responsive cells. Immunology 82:465–772

    PubMed  CAS  Google Scholar 

  44. Lowell CA, Fumagalli L, Berton G (1996) Deficiency of Src family kinases p59/61hck and p58c-fgr results in defective adhesion-dependent neutrophil functions. J Cell Biol 133:895–910

    Article  PubMed  CAS  Google Scholar 

  45. Stanislawski L, Huu TP, Perianin A (1990) Priming effect of fibronectin on respiratory burst of human neutrophils induced by formyl peptides and platelet-activating factor. Inflammation 14:523–530

    Article  PubMed  CAS  Google Scholar 

  46. Liles WC, Ledbetter JA, Waltersdorph AW, Klebanoff SJ (1995) Cross-linking of CD18 primes human neutrophils for activation of the respiratory burst in response to specific stimuli: implications for adhesion-dependent physiological responses in neutrophils. J Leukoc Biol 58:690–697

    PubMed  CAS  Google Scholar 

  47. Yuo A, Kitagawa S, Kasahara T, Matsushima K, Saito M, Takaku F (1991) Stimulation and priming of human neutrophils by interleukin-8: cooperation with tumor necrosis factor and colony-stimulating factors. Blood 78:2708–2714

    PubMed  CAS  Google Scholar 

  48. Elbim C, Bailly S, Chollet-Martin S, Hakim J, Gougerot-Pocidalo M-A (1994) Differential priming effects of proinflammatory cytokines on human neutrophil oxidative burst in response to bacterial N-formyl peptides. Infect Immun 62:2195–2201

    PubMed  CAS  Google Scholar 

  49. Elbim C, Chollet-Martin S, Bailly S, Hakim J, Gougerot-Pocidalo MA (1993) Priming of polymorphonuclear neutrophils by tumor necrosis factor alpha in whole blood: identification of two polymorphonuclear neutrophil subpopulations in response to formyl-peptides. Blood 82:633–640

    PubMed  CAS  Google Scholar 

  50. Khwaja A, Carver JE, Linch DC (1992) Interactions of granulocyte-macrophage colony-stimulating factor (CSF), granulocyte CSF, and tumor necrosis factor a in the priming of the neutrophil respiratory burst. Blood 79:745–753

    PubMed  CAS  Google Scholar 

  51. Wyman TH, Dinarello CA, Banerjee A, Gamboni-Robertson F, Hiester AA, England KM, Kelher M, Silliman CC (2002) Physiological levels of interleukin-18 stimulate multiple neutrophil functions through p38 MAP kinase activation. J Leukoc Biol 72:401–409

    PubMed  CAS  Google Scholar 

  52. Elbim C, Guichard C, Dang PM, Fay M, Pedruzzi E, Demur H, Pouzet C, El Benna J, Gougerot-Pocidalo MA (2005) Interleukin-18 primes the oxidative burst of neutrophils in response to formyl-peptides: role of cytochrome b558 translocation and N-formyl peptide receptor endocytosis. Clin Diagn Lab Immunol 12:436–446

    Article  PubMed  CAS  Google Scholar 

  53. Musso T, Calosso L, Zucca M, Millesimo M, Puliti M, Bulfone-Paus S, Merlino C, Savoia D, Cavallo R, Ponzi AN, Badolato R (1998) Interleukin-15 activates proinflammatory and antimicrobial functions in polymorphonuclear cells. Infect Immun 66:2640–2607

    PubMed  CAS  Google Scholar 

  54. Perianin A, Snyderman R, Malfroy B (1989) Substance P primes human neutrophil activation: a mechanism for neurological regulation of inflammation. Biochem Biophys Res Commun 161:520–524

    Article  PubMed  CAS  Google Scholar 

  55. Forehand JR, Pabst MJ, Phillips WA, Johnston RB Jr (1989) Lipopolysaccharide priming of human neutrophils for an enhanced respirator burst. Role of intracellular free calcium. J Clin Invest 83:74–83

    Article  PubMed  CAS  Google Scholar 

  56. Hayashi F, Means TK, Luster AD (2003) Toll-like receptors stimulate human neutrophil function. Blood 102:2660–2669

    Article  PubMed  CAS  Google Scholar 

  57. Rohn TT, Nelson LK, Sipes KM, Swain SD, Jutila KL, Quinn MT (1999) Priming of human neutrophils by peroxynitrite: potential role in enhancement of the local inflammatory response. J Leukoc Biol 65:59–70

    PubMed  CAS  Google Scholar 

  58. Kusner DJ, Aucott JN, Franceschi D, Sarasua MM, Spagnuolo PJ, King CH (1991) Protease priming of neutrophil superoxide production. Effects on membrane lipid order and lateral mobility. J Biol Chem 266:16465–16471

    PubMed  CAS  Google Scholar 

  59. McColl SR, Beauseigle D, Gilbert C, Naccache PH (1990) Priming of the human neutrophil respiratory burst by granulocyte-macrophage colony-stimulating factor and tumor necrosis factor-alpha involves regulation at a post-cell surface receptor level. Enhancement of the effect of agents which directly activate G proteins. J Immunol 145:3047–3053

    PubMed  CAS  Google Scholar 

  60. Keil ML, Solomon NL, Lodhi IJ, Stone KC, Jesaitis AJ, Chang PS, Linderman JJ, Omann GM (2003) Priming-induced localization of G(ialpha2) in high density membrane microdomains. Biochem Biophys Res Commun 301:862–872

    Article  PubMed  CAS  Google Scholar 

  61. Bauldry SA, McCall CE, Cousart SL, Bass DA (1991) Tumor necrosis factor-alpha priming of phospholipase A2 activation in human neutrophils. An alternative mechanism of priming. J Immunol 146:1277–1285

    PubMed  CAS  Google Scholar 

  62. Daniels RH, Finnen MJ, Hill ME, Lackie JM (1992) Recombinant human monocyte IL-8 primes NADPH-oxidase and phospholipase A2 activation in human neutrophils. Immunology 75:157–163

    PubMed  CAS  Google Scholar 

  63. Forehand JR, Johnston RB Jr, Bomalaski JS (1993) Phospholipase A2 activity in human neutrophils. Stimulation by lipopolysaccharide and possible involvement in priming for an enhanced respiratory burst. J Immunol 151:4918–4925

    PubMed  CAS  Google Scholar 

  64. Syrbu SI, Waterman WH, Molski TF, Nagarkatti D, Hajjar JJ, Sha’afi RI (1999) Phosphorylation of cytosolic phospholipase A2 and the release of arachidonic acid in human neutrophils. J Immunol 162:2334–2340

    PubMed  CAS  Google Scholar 

  65. Cadwallader KA, Condliffe AM, McGregor A, Walker TR, White JF, Stephens LR, Chilvers ER (2002) Regulation of phosphatidylinositol 3-kinase activity and phosphatidylinositol 3,4,5-trisphosphate accumulation by neutrophil priming agents. J Immunol 169:3336–3344

    PubMed  CAS  Google Scholar 

  66. Bourgoin S, Plante E, Gaudry M, Naccache PH, Borgeat P, Poubelle PE (1990) Involvement of a phospholipase D in the mechanism of action of granulocyte-macrophage colony-stimulating factor (GM-CSF): priming of human neutrophils in vitro with GM-CSF is associated with accumulation of phosphatidic acid and diradylglycerol. J Exp Med 172:767–777

    Article  PubMed  CAS  Google Scholar 

  67. Bauldry SA, Bass DA, Cousart SL, McCall CE (1991) Tumor necrosis factor alpha priming of phospholipase D in human neutrophils. Correlation between phosphatidic acid production and superoxide generation. J Biol Chem 266:4173–4179

    PubMed  CAS  Google Scholar 

  68. Cadwallader KA, Uddin M, Condliffe AM, Cowburn AS, White JF, Skepper JN, Ktistakis NT, Chilvers ER (2004) Effect of priming on activation and localization of phospholipase D-1 in human neutrophils. Eur J Biochem 271:2755–2764

    Article  PubMed  CAS  Google Scholar 

  69. Corey S, Eguinoa A, Puyana-Theall K, Bolen JB, Cantley L, Mollinedo F, Jackson TR, Hawkins PT, Stephens LR (1993) Granulocyte macrophage-colony stimulating factor stimulates both association and activation of phosphoinositide 3OH-kinase and src-related tyrosine kinase(s) in human myeloid derived cells. EMBO J 12:2681–2690

    PubMed  CAS  Google Scholar 

  70. Kodama T, Hazeki K, Hazeki O, Okada T, Ui M (1999) Enhancement of chemotactic peptide-induced activation of phosphoinositide 3-kinase by granulocyte-macrophage colony-stimulating factor and its relation to the cytokine-mediated priming of neutrophil superoxide-anion production. Biochem J 337:201–209

    Article  PubMed  CAS  Google Scholar 

  71. Bokoch GM (1995) Chemoattractant signalling and leukocyte activation. Blood 86:1649–1660

    PubMed  CAS  Google Scholar 

  72. Dang P-M, Fontayne A, Hakim J, El Benna J, Périanin A (2001) Protein kinase C z (zeta) phosphorylates a subset of selective sites of the NADPH oxidase component p47phox and regulates the respiratory burst of f-Met-Leu-Phe-stimulated human neutrophils. J Immunol 166:1206–1213

    PubMed  CAS  Google Scholar 

  73. Dang PM, Morel F, Gougerot-Pocidalo MA, Benna JE (2003) Phosphorylation of the NADPH oxidase component p67(PHOX) by ERK2 and P38MAPK: selectivity of phosphorylated sites and existence of an intramolecular regulatory domain in the tetratricopeptide-rich region. Biochemistry 42:4520–4526

    Article  PubMed  CAS  Google Scholar 

  74. Dewas C, Gougerot-Pocidalo MA, El Benna J (2000) The mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 pathway is involved in formyl-methionyl-leucyl-phenylalanine-induced p47phox phosphorylation in human neutrophils. J Immunol 165:5238–5244

    PubMed  CAS  Google Scholar 

  75. Martyn KD, Kim MJ, Quinn MT, Dinauer MC, Knaus UG (2005) p21-activated kinase (Pak) regulates NADPH oxidase activation in human neutrophils. Blood 106:3962–3969

    Article  PubMed  CAS  Google Scholar 

  76. Segal AW, Heyworth PG, Cockcroft S, Barrowman M (1985) Stimulated neutrophils from patients with autosomal recessive chronic granulomatous disease fail to phosphorylate a Mr-44 000 protein. Nature 316:547–549

    Article  PubMed  CAS  Google Scholar 

  77. Okamura N, Curnutte JT, Roberts RL, Babior BM (1988) Relationship of protein phosphorylation to the activation of the respiratory burst in human neutrophils. Defect in the phosphorylation of a group of closely related 48-kDa proteins in two forms of chronic granulomatous disease. J Biol Chem 263:6777–6782

    PubMed  CAS  Google Scholar 

  78. Rotrosen D, Leto TL (1990) Phosphorylation of neutrophil 47-kDa cytosolic oxidase factor. Translocation to membrane is associated with distinct phosphorylation events. J Biol Chem 265:19910–19915

    PubMed  CAS  Google Scholar 

  79. Faust LP, El Benna J, Babior BM, Chanock SJ (1995) The phosphorylation targets of p47 phox a subunit of the respiratory burst oxidase. Functions of the individual target serines as evaluated by site-directed mutagenesis. J Clin Invest 96:1499–1505

    Article  PubMed  CAS  Google Scholar 

  80. Inanami O, Johnson JL, McAdara JK, El Benna J, Faust LR, Newburger PE, Babior BM (1998) Activation of the leukocyte NADPH oxidase by phorbol ester requires p47phox phosphorylation on serine 303 or 304. J Biol Chem 273:9539–9543

    Article  PubMed  CAS  Google Scholar 

  81. Johnson JL, Park JW, El Benna J, Faust LR, Inanami O, Babior BM (1998) Activation of p47phox, a cytosolic subunit of the leukocyte NADPH oxidase. Phosphorylation of ser359 or 370 precedes phosphorylation at other sites and is required for activity. J Biol Chem 273:35147–35152

    Article  PubMed  CAS  Google Scholar 

  82. Park JW, Babior BM (1997) Activation of the leukocyte NADPH oxidase subunit p47phox by protein kinase C. A phosphorylation-dependent change in the conformation of the C-terminal end of p47phox. Biochemistry 36:7474–7480

    Article  PubMed  CAS  Google Scholar 

  83. Park H-S, Park J-W (1998) Conformational changes of leukocyte NADPH oxidase subunit p47phox during activation studied through its intrinsic fluorescence. Biochim Biophys Acta 1387:406–411

    PubMed  CAS  Google Scholar 

  84. Swain SD, Helgerson SL, Davis AR, Nelson LK, Quinn MT (1997) Analysis of activation-induced conformational changes in p47phox using tryptophan fluorescence spectroscopy. J Biol Chem 272:29502–29509

    Article  PubMed  CAS  Google Scholar 

  85. de Mendez I, Homayounpour N, Leto TL (1997) Specificity of p47phox SH3 domain interactions in NADPH oxidase assembly and activation. Mol Cell Biol 17:2177–2185

    PubMed  Google Scholar 

  86. Ago T, Kuribayashi F, Hiroaki H, Takeya R, Ito T, Kohda D, Sumimoto H (2003) Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation. Proc Natl Acad Sci USA 100:4474–4479

    Article  PubMed  CAS  Google Scholar 

  87. Shiose A, Sumimoto H (2000) Arachidonic acid and phosphorylation synergistically induce a conformational change of p47phox to activate the phagocyte NADPH oxidase. J Biol Chem 275:13793–13801

    Article  PubMed  CAS  Google Scholar 

  88. Huang J, Kleinberg ME (1999) Activation of the phagocyte NADPH oxidase protein p47(phox). Phosphorylation controls SH3 domain-dependent binding to p22(phox). J Biol Chem 274:19731–19739

    Article  PubMed  CAS  Google Scholar 

  89. Dang MP-C, Dewas C, Gaudry M, Fay M, Gougerot-Pocidalo MA, El Benna J (1999) Priming of human neutrophil respiratory burst by granulocyte/macrophage colony-stimulating factor (GM-CSF) involves partial phosphorylation of p47phox. J Biol Chem 274:20704–20708

    Article  PubMed  CAS  Google Scholar 

  90. Dewas C, Dang PMC, Gougerot-Pocidalo M-A, El Benna J (2003) TNF induces phosphorylation of p47phox in human neutrophils: partial phosphorylation of p47phox is a common event of priming of human neutrophils by TNF and granulocyte-macrophage colony-stimulating factor. J Immunol 171:4392–4398

    PubMed  CAS  Google Scholar 

  91. Dang PM, Stensballe A, Boussetta T, Raad H, Dewas C, Kroviarski Y, Hayem G, Jensen ON, Gougerot-Pocidalo MA, El-Benna J (2006) A specific p47phox-serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites. J Clin Invest 116:2033–2043

    Article  PubMed  CAS  Google Scholar 

  92. DeLeo FR, Renee J, McCormick S, Nakamura N, Apicella M, Weiss JP, Nauseef WM (1998) Neutrophils exposed to bacterial lipopolysaccharide upregulate NADPH oxidase assembly. J Clin Invest 101:455–463

    Article  PubMed  CAS  Google Scholar 

  93. Brown GE, Stewart M, Bissonnette SA, Elia AE, Wilker E, Yaffe MB (2004) Distinct ligand-dependent roles for p38 MAPK in priming and activation of the neutrophil NADPH oxidase. J Biol Chem 279:27059–27068

    Article  PubMed  CAS  Google Scholar 

  94. Ward R, Nakamura M, McLeish KR (2000) Priming of the neutrophil respiratory burst involves p38 mitogen-activated protein kinase-dependent exocytosis of flavocytochrome b558-containing granules. J Biol Chem 275:36713–36719

    Article  PubMed  CAS  Google Scholar 

  95. Mansfield PJ, Hinkovska-Galcheva V, Shayman JA, Boxer LA (2002) Granulocyte colony-stimulating factor primes NADPH oxidase in neutrophils through translocation of cytochrome b(558) by gelatinase-granule release. J Lab Clin Med 140:9–16

    Article  PubMed  CAS  Google Scholar 

  96. Fäldt J, Dahlgren C, Ridell M, Karlsson A (2001) Priming of human neutrophils by mycobacterial lipoarabinomannans: role of granule mobilization. Microbes Infect 3:1101–1109

    Article  PubMed  Google Scholar 

  97. Wewers MD, Rinehart JJ, She ZW, Herzyk DJ, Hummel MM, Kinney PA, Davis WB (1990) Tumor necrosis factor infusions in humans prime neutrophils for hypochlorous acid production. Am J Physiol 259:L276–L282

    PubMed  CAS  Google Scholar 

  98. Bass DA, Olbrantz P, Szejda P, Seeds MC, McCall CE (1986) Subpopulations of neutrophils with increased oxidative product formation in blood of patients with infection. J Immunol 136:860–866

    PubMed  CAS  Google Scholar 

  99. Worthen GS, Haslett C, Rees AJ, Gumbay RS, Henson JE, Henson PM (1987) Neutrophil-mediated pulmonary vascular injury. Synergistic effect of trace amounts of lipopolysaccharide and neutrophil stimuli on vascular permeability and neutrophil sequestration in the lung. Am Rev Respir Dis 136:19–28

    PubMed  CAS  Google Scholar 

  100. Linas SL, Whittenburg D, Parsons PE, Repine JE (1992) Mild renal ischemia activates primed neutrophils to cause acute renal failure. Kidney Int 42:610–616

    Article  PubMed  CAS  Google Scholar 

  101. Chollet-Martin S, Montravers P, Gibert C, Elbim C, Desmonts JM, Fagon JY, Gougerot-Pocidalo MA (1992) Subpopulation of hyperresponsive polymorphonuclear neutrophils in patients with adult respiratory distress syndrome. Role of cytokine production. Am Rev Respir Dis 146:990–996

    PubMed  CAS  Google Scholar 

  102. Firestein GS, Zvaifler NJ (1992) Rheumatoid arthritis: a disease of disordered immunity. In: Gallin JI, Goldstein IM, Snyderman R (eds) Inflammation. Basic principles and clinical correlates. 2nd edn. Raven, New York, pp 959–977

    Google Scholar 

  103. Arnett FC, Edworthy SM, Bloch DA et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324

    Article  PubMed  CAS  Google Scholar 

  104. Nurcombe HL, Bucknall RC, Edwards SW (1991) Activation of the neutrophil myeloperoxidase–H2O2 system by synovial fluid isolated from patients with rheumatoid arthritis. Ann Rheum Dis 50:237–242

    Article  PubMed  CAS  Google Scholar 

  105. Nurcombe HL, Bucknall RC, Edwards SW (1991) Neutrophils isolated from the synovial fluid of patients with rheumatoid arthritis: priming and activation in vivo. Ann Rheum Dis 50:147–153

    PubMed  CAS  Google Scholar 

  106. El Benna J, Hayem G, Dang PMC, Fay M, Elbim C, Chollet-Martin S, Meyer O, Gougerot-Pocidalo MA (2002) Polymorphonuclear neutrophil NADPH oxidase priming and p47phox phosphorylation in rheumatoid joints. Inflammation 26:273–278

    Article  PubMed  Google Scholar 

  107. Jacobi J, Sela S, Cohen HI, Chezar J, Kristal B (2006) Priming of polymorphonuclear leukocytes: a culprit in the initiation of endothelial cell injury. Am J Physiol Heart Circ Physiol 290:H2051–H2058

    Article  PubMed  CAS  Google Scholar 

  108. Conner WC, Gallagher CM, Miner TJ, Tavaf-Motamen H, Wolcott KM, Shea-Donohue T (1999) Neutrophil priming state predicts capillary leak after gut ischemia in rats. J Surg Res 84:24–30

    Article  PubMed  CAS  Google Scholar 

  109. Sela S, Mazor R, Amsalam M, Yagil C, Yagil Y, Kristal B (2004) Primed polymorphonuclear leukocytes, oxidative stress, and inflammation antecede hypertension in the Sabra rat. Hypertension 44:764–769

    Article  PubMed  CAS  Google Scholar 

  110. Sela S, Shurtz-Swirski R, Cohen-Mazor M, Mazor R, Chezar J, Shapiro G, Hassan K, Shkolnik G, Geron R, Kristal B (2005) Primed peripheral polymorphonuclear leukocyte: a culprit underlying chronic low-grade inflammation and systemic oxidative stress in chronic kidney disease. J Am Soc Nephrol 16:2431–2438 Erratum in: J Am Soc Nephrol 16:2814–2822

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Association de la Recherche sur la Polyarthrite (ARP), Association pour la recherche sur le cancer (ARC), Institut national de santé et de la recherche médicale (INSERM), and le centre national de la recherche scientifique (CNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamel El-Benna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Benna, J., Dang, P.MC. & Gougerot-Pocidalo, MA. Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin Immunopathol 30, 279–289 (2008). https://doi.org/10.1007/s00281-008-0118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-008-0118-3

Keywords

Navigation