Skip to main content

Advertisement

Log in

In vivo imaging of axonal transport using MRI: aging and Alzheimer’s disease

  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

MRI using manganese as a trans-synaptic axonal tracing agent can unveil dynamics of axonal transport in living subjects. We use this technology to test the hypotheses if impaired axonal transport is a significant pathophysiological process in aging and early Alzheimer’s disease (AD) and in part accounting for “selective vulnerability” of projection neurons in AD.

Methods

To allow quantitative assessment of axonal transport in vivo, we developed voxel-based statistical mapping technology as well as a tracer kinetic modeling method based on mass transport for manganese-enhanced MRI to estimate axonal transport rates in aging rats and AD transgenic mice.

Results

These techniques demonstrated manganese-enhanced signal changes in axonal projections of the olfactory tract and decreased axonal transport rates in rodent models of aging and AD.

Conclusion

Altered axonal transport may be a critical pathophysiological process in aging and AD. Manganese-enhanced MRI provides exciting opportunities for the investigations of altered axonal transport in AD and related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Minoshima S, Foster NL, Kuhl DE. Posterior cingulate cortex in Alzheimer’s disease. Lancet 1994;344(8926):895.

    Article  PubMed  CAS  Google Scholar 

  2. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997;42:85–94.

    Article  PubMed  Google Scholar 

  3. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004;55:306–19.

    Article  PubMed  CAS  Google Scholar 

  4. Drzezga A, Grimmer T, Henriksen G, Stangier I, Perneczky R, Diehl-Schmid J, et al. Imaging of amyloid plaques and cerebral glucose metabolism in semantic dementia and Alzheimer’s disease. Neuroimage 2008;39:619–33.

    Article  PubMed  Google Scholar 

  5. Sokoloff L. Sites and mechanisms of function-related changes in energy metabolism in the nervous system. Dev Neurosci 1993;15:194–206.

    Article  PubMed  Google Scholar 

  6. Minoshima S, Cross DJ, Foster NL, Henry TR, Kuhl DE. Discordance between traditional pathologic and energy metabolic changes in very early Alzheimer’s disease. Pathophysiological implications. Ann NY Acad Sci 1999;893:350–2.

    Article  PubMed  CAS  Google Scholar 

  7. Stokin GB, Goldstein LS. Axonal transport and Alzheimer’s disease. Annu Rev Biochem 2006;75:607–27.

    Article  PubMed  CAS  Google Scholar 

  8. Kitt CA, Struble RG, Cork LC, Mobley WC, Walker LC, Joh TH, et al. Catecholaminergic neurites in senile plaques in prefrontal cortex of aged nonhuman primates. Neuroscience 1985;16:691–9.

    Article  PubMed  CAS  Google Scholar 

  9. Pautler RG, Koretsky AP. Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging. Neuroimage 2002;16:441–8.

    Article  PubMed  Google Scholar 

  10. Pautler RG, Silva AC, Koretsky AP. In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn Reson Med 1998;40:740–8.

    Article  PubMed  CAS  Google Scholar 

  11. Cross DJ, Minoshima S, Anzai Y, Flexman JA, Keogh BP, Kim Y, et al. Statistical mapping of functional olfactory connections of the rat brain in vivo. Neuroimage 2004;23:1326–35.

    Article  PubMed  Google Scholar 

  12. Hyman BT, Arriagada PV, Van Hoesen GW. Pathologic changes in the olfactory system in aging and Alzheimer’s disease. Ann NY Acad Sci 1991;640:14–9.

    PubMed  CAS  Google Scholar 

  13. Cross DJ, Flexman JA, Anzai Y, Morrow TJ, Maravilla KR, Minoshima S. In vivo imaging of functional disruption, recovery and alteration in rat olfactory circuitry after lesion. Neuroimage 2006;32:1265–72.

    Article  PubMed  Google Scholar 

  14. Ho DT, Schlosser P, Caplow T. Determination of longitudinal dispersion coefficient and net advection in the tidal Hudson river with a large-scale, high resolution SF6 tracer release experiment. Environ Sci Technol 2002;36:3234–41.

    Article  PubMed  CAS  Google Scholar 

  15. Cross DJ, Flexman JA, Anzai Y, Maravilla KR, Minoshima S. Age-related decrease in axonal transport measured by MR imaging in vivo. Neuroimage. 2007 (in press, Epub ahead of print).

  16. Smith KD, Kallhoff V, Zheng H, Pautler RG. In vivo axonal transport rates decrease in a mouse model of Alzheimer’s disease. Neuroimage 2007;35:1401–8.

    Article  PubMed  Google Scholar 

  17. Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 2005;307:1282–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

The authors declare that they have no relevant financial or any other interests in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Minoshima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minoshima, S., Cross, D. In vivo imaging of axonal transport using MRI: aging and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 35 (Suppl 1), 89–92 (2008). https://doi.org/10.1007/s00259-007-0707-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0707-8

Keywords

Navigation