Skip to main content

Advertisement

Log in

Control of Bone Remodeling by the Peripheral Sympathetic Nervous System

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The skeleton is no longer seen as a static, isolated, and mostly structural organ. Over the last two decades, a more complete picture of the multiple functions of the skeleton has emerged, and its interactions with a growing number of apparently unrelated organs have become evident. The skeleton not only reacts to mechanical loading and inflammatory, hormonal, and mineral challenges, but also acts of its own accord by secreting factors controlling the function of other tissues, including the kidney and possibly the pancreas and gonads. It is thus becoming widely recognized that it is by nature an endocrine organ, in addition to a structural organ and site of mineral storage and hematopoiesis. Consequently and by definition, bone homeostasis must be tightly regulated and integrated with the biology of other organs to maintain whole body homeostasis, and data uncovering the involvement of the central nervous system (CNS) in the control of bone remodeling support this concept. The sympathetic nervous system (SNS) represents one of the main links between the CNS and the skeleton, based on a number of anatomic, pharmacologic, and genetic studies focused on β-adrenergic receptor (βAR) signaling in bone cells. The goal of this report was to review the data supporting the role of the SNS and βAR signaling in the regulation of skeletal homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ebell BB (1937) The Paprus Ebers: the greatest Egyptian medical document. Oxford University Press, London

    Google Scholar 

  2. Gros M (1846) La Disposition des nerfs des os. Bull Soc Anat Paris 21:369–372

    Google Scholar 

  3. Hayat M (2002) Factors affecting antigen retrieval. In: Hayat MA (ed) Microscopy, immunohistochemistry, and antigen retrieval methods for light and electron microscopy. Springer, pp 53–69

  4. Shi SR, Key ME, Kalra KL (1991) Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem 39:741–748

    CAS  PubMed  Google Scholar 

  5. de Castro F (1929) Quelques observations sur l’intervention du système nerveux autonome dans l’ossification. Innervation du tissu osseux et de la moelle osseuse. T. Travaux du Lab Rec Biol Univ Madrid 26:215

    Google Scholar 

  6. Castaneda-Corral G, Jimenez-Andrade JM, Bloom AP, Taylor RN, Mantyh WG, Kaczmarska MJ, Ghilardi JR, Mantyh PW (2011) The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience 178:196–207

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Bjurholm A, Kreicbergs A, Terenius L, Goldstein M, Schultzberg M (1988) Neuropeptide Y-, tyrosine hydroxylase- and vasoactive intestinal polypeptide-immunoreactive nerves in bone and surrounding tissues. J Auton Nerv Syst 25:119–125

    CAS  PubMed  Google Scholar 

  8. Duncan CP, Shim SS (1977) J. Edouard Samson Address: the autonomic nerve supply of bone. An experimental study of the intraosseous adrenergic nervi vasorum in the rabbit. J Bone Jt Surg Br 59:323–330

    CAS  Google Scholar 

  9. Ohtori S, Inoue G, Koshi T, Ito T, Watanabe T, Yamashita M, Yamauchi K, Suzuki M, Doya H, Moriya H, Takahashi Y, Takahashi K (2007) Sensory innervation of lumbar vertebral bodies in rats. Spine 32:1498–1502

    PubMed  Google Scholar 

  10. Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, Keyser CP, Clohisy DR, Adams DJ, O’Leary P, Mantyh PW (2002) Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience 113:155–166

    CAS  PubMed  Google Scholar 

  11. Mahns DA, Ivanusic JJ, Sahai V, Rowe MJ (2006) An intact peripheral nerve preparation for monitoring the activity of single, periosteal afferent nerve fibres. J Neurosci Methods 156:140–144

    PubMed  Google Scholar 

  12. Fan W, Bouwense SA, Crawford R, Xiao Y (2010) Structural and cellular features in metaphyseal and diaphyseal periosteum of osteoporotic rats. J Mol Histol 41:51–60

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Denes A, Boldogkoi Z, Uhereczky G, Hornyak A, Rusvai M, Palkovits M, Kovacs KJ (2005) Central autonomic control of the bone marrow: multisynaptic tract tracing by recombinant pseudorabies virus. Neuroscience 134:947–963

    CAS  PubMed  Google Scholar 

  14. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317

    CAS  PubMed  Google Scholar 

  15. Ring PA (1961) The influence of the nervous system upon the growth of bones. J Bone Jt Surg Br 43:121–140

    Google Scholar 

  16. Gajda M, Adriaensen D, Cichocki T (2000) Development of the innervation of long bones: expression of the growth-associated protein 43. Folia Histochem Cytobiol 38:103–110

    CAS  PubMed  Google Scholar 

  17. Gajda M, Litwin JA, Tabarowski Z, Zagolski O, Cichocki T, Timmermans JP, Adriaensen D (2010) Development of rat tibia innervation: colocalization of autonomic nerve fiber markers with growth-associated protein 43. Cells Tissues Organs 191:489–499

    CAS  PubMed  Google Scholar 

  18. Sisask G, Bjurholm A, Ahmed M, Kreicbergs A (1995) Ontogeny of sensory nerves in the developing skeleton. Anat Rec 243:234–240

    CAS  PubMed  Google Scholar 

  19. Sisask G, Bjurholm A, Ahmed M, Kreicbergs A (1996) The development of autonomic innervation in bone and joints of the rat. J Auton Nerv Syst 59:27–33

    CAS  PubMed  Google Scholar 

  20. Martini R, Schachner M (1991) Complex expression pattern of tenascin during innervation of the posterior limb buds of the developing chicken. J Neurosci Res 28:261–279

    CAS  PubMed  Google Scholar 

  21. Gomez C, Burt-Pichat B, Mallein-Gerin F, Merle B, Delmas PD, Skerry TM, Vico L, Malaval L, Chenu C (2005) Expression of Semaphorin-3A and its receptors in endochondral ossification: potential role in skeletal development and innervation. Dev Dyn 234:393–403

    CAS  PubMed  Google Scholar 

  22. Guha U, Gomes WA, Samanta J, Gupta M, Rice FL, Kessler JA (2004) Target-derived BMP signaling limits sensory neuron number and the extent of peripheral innervation in vivo. Development 131:1175–1186

    CAS  PubMed  Google Scholar 

  23. Gray C, Hukkanen M, Konttinen YT, Terenghi G, Arnett TR, Jones SJ, Burnstock G, Polak JM (1992) Rapid neural growth: calcitonin gene-related peptide and substance P-containing nerves attain exceptional growth rates in regenerating deer antler. Neuroscience 50:953–963

    CAS  PubMed  Google Scholar 

  24. Singh IJ, Herskovits MS, Chiego DJ Jr, Klein RM (1982) Modulation of osteoblastic activity by sensory and autonomic innervation of bone. Prog Clin Biol Res 101:535–551

    CAS  PubMed  Google Scholar 

  25. Suttie JM, Fennessy PF (1985) Regrowth of amputated velvet antlers with and without innervation. J Exp Zool 234:359–366

    CAS  PubMed  Google Scholar 

  26. Hukkanen M, Konttinen YT, Santavirta S, Paavolainen P, Gu XH, Terenghi G, Polak JM (1993) Rapid proliferation of calcitonin gene-related peptide-immunoreactive nerves during healing of rat tibial fracture suggests neural involvement in bone growth and remodelling. Neuroscience 54:969–979

    CAS  PubMed  Google Scholar 

  27. Strange-Vognsen HH, Laursen H (1997) Nerves in human epiphyseal uncalcified cartilage. J Pediatr Orthop B 6:56–58

    CAS  PubMed  Google Scholar 

  28. Li J, Ahmad T, Spetea M, Ahmed M, Kreicbergs A (2001) Bone reinnervation after fracture: a study in the rat. J Bone Miner Res 16:1505–1510

    CAS  PubMed  Google Scholar 

  29. Tam J, Trembovler V, Di Marzo V, Petrosino S, Leo G, Alexandrovich A, Regev E, Casap N, Shteyer A, Ledent C, Karsak M, Zimmer A, Mechoulam R, Yirmiya R, Shohami E, Bab I (2008) The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. FASEB J 22:285–294

    CAS  PubMed  Google Scholar 

  30. Edoff K, Grenegard M, Hildebrand C (2000) Retrograde tracing and neuropeptide immunohistochemistry of sensory neurones projecting to the cartilaginous distal femoral epiphysis of young rats. Cell Tissue Res 299:193–200

    CAS  PubMed  Google Scholar 

  31. Maassen AP (1952) The influence of adrenalectomy on the growth of rats. Arch Int Pharmacodyn Ther 88:473–481

    CAS  PubMed  Google Scholar 

  32. Paul MI, Kvetnansky R, Cramer H, Silbergeld S, Kopin IJ (1971) Immobilization stress induced changes in adrenocortical and medullary cyclic AMP content in the rat. Endocrinology 88:338–344

    CAS  PubMed  Google Scholar 

  33. Smith DM, Johnston CC Jr (1974) Hormonal responsiveness of adenylate cyclase activity from separate bone cells. Endocrinology 95:130–139

    CAS  PubMed  Google Scholar 

  34. Wong GL (1979) Induction of metabolic changes and down regulation of bovine parathyroid hormone-responsive adenylate cyclase are dissociable in isolated osteoclastic and osteoblastic bone cells. J Biol Chem 254:34–37

    CAS  PubMed  Google Scholar 

  35. Lipski S (1976) Effects of beta-adrenergic stimulation on bone-marrow function in normal and sublethally irradiated mice. I. The effect of isoproterenol on cAMP content in bone-marrow cells in vivo and in vitro. Int J Radiat Biol Relat Stud Phys Chem Med 29:359–366

    CAS  PubMed  Google Scholar 

  36. Gutierrez GE, Mundy GR, Katz MS (1984) Adenylate cyclase of osteoblast-like cells from rat osteosarcoma is stimulated by calcitonin as well as parathyroid hormone. Endocrinology 115:2342–2346

    CAS  PubMed  Google Scholar 

  37. Moore RE, Smith CK II, Bailey CS, Voelkel EF, Tashjian AH Jr (1993) Characterization of beta-adrenergic receptors on rat and human osteoblast-like cells and demonstration that beta-receptor agonists can stimulate bone resorption in organ culture. Bone Miner 23:301–315

    CAS  PubMed  Google Scholar 

  38. Togari A, Arai M, Mizutani S, Mizutani S, Koshihara Y, Nagatsu T (1997) Expression of mRNAs for neuropeptide receptors and beta-adrenergic receptors in human osteoblasts and human osteogenic sarcoma cells. Neurosci Lett 233:125–128

    CAS  PubMed  Google Scholar 

  39. Kellenberger S, Muller K, Richener H, Bilbe G (1998) Formoterol and isoproterenol induce c-fos gene expression in osteoblast-like cells by activating beta2-adrenergic receptors. Bone 22:471–478

    CAS  PubMed  Google Scholar 

  40. Majeska RJ, Minkowitz B, Bastian W, Einhorn TA (1992) Effects of beta-adrenergic blockade in an osteoblast-like cell line. J Orthop Res 10:379–384

    CAS  PubMed  Google Scholar 

  41. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520

    CAS  PubMed  Google Scholar 

  42. Aitken SJ, Landao-Bassonga E, Ralston SH, Idris AI (2009) Beta2-adrenoreceptor ligands regulate osteoclast differentiation in vitro by direct and indirect mechanisms. Arch Biochem Biophys 482:96–103

    CAS  PubMed  Google Scholar 

  43. Kondo H, Takeuchi S, Togari A (2013) Beta-adrenergic signaling stimulates osteoclastogenesis via reactive oxygen species. Am J Physiol Endocrinol Metab 304:E507–E515

    Google Scholar 

  44. Takahata Y, Takarada T, Iemata M, Yamamoto T, Nakamura Y, Kodama A, Yoneda Y (2009) Functional expression of beta2 adrenergic receptors responsible for protection against oxidative stress through promotion of glutathione synthesis after Nrf2 upregulation in undifferentiated mesenchymal C3H10T1/2 stem cells. J Cell Physiol 218:268–275

    CAS  PubMed  Google Scholar 

  45. Lai LP, Mitchell J (2008) Beta2-adrenergic receptors expressed on murine chondrocytes stimulate cellular growth and inhibit the expression of Indian hedgehog and collagen type X. J Cell Biochem 104:545–553

    CAS  PubMed  Google Scholar 

  46. Fonseca TL, Jorgetti V, Costa CC, Capelo LP, Covarrubias AE, Moulatlet AC, Teixeira MB, Hesse E, Morethson P, Beber EH, Freitas FR, Wang CC, Nonaka KO, Oliveira R, Casarini DE, Zorn TM, Brum PC, Gouveia CH (2011) Double disruption of alpha2A- and alpha2C-adrenoceptors results in sympathetic hyperactivity and high-bone-mass phenotype. J Bone Miner Res 26:591–603

    CAS  PubMed  Google Scholar 

  47. Mitchell J, Lai LP, Peralta F, Xu Y, Sugamori K (2011) Beta2-adrenergic receptors inhibit the expression of collagen type II in growth plate chondrocytes by stimulating the AP-1 factor Jun-B. Am J Physiol Endocrinol Metab 300:E633–E639

    CAS  PubMed  Google Scholar 

  48. Vignon E, Broquet P, Mathieu P, Louisot P, Richard M (1990) Histaminergic H1, serotoninergic, beta adrenergic and dopaminergic receptors in human osteoarthritic cartilage. Biochem Int 20:251–255

    CAS  PubMed  Google Scholar 

  49. Kitaura T, Tsunekawa N, Kraemer WJ (2002) Inhibited longitudinal growth of bones in young male rats by clenbuterol. Med Sci Sports Exerc 34:267–273

    CAS  PubMed  Google Scholar 

  50. Whitsett JA, Burdsall J, Workman L, Hollinger B, Neely J (1983) Beta-adrenergic receptors in pediatric tumors: uncoupled beta 1-adrenergic receptor in Ewing’s sarcoma. J Natl Cancer Inst 71:779–786

    CAS  PubMed  Google Scholar 

  51. Nuntapornsak A, Wongdee K, Thongbunchoo J, Krishnamra N, Charoenphandhu N (2010) Changes in the mRNA expression of osteoblast-related genes in response to beta(3)-adrenergic agonist in UMR106 cells. Cell Biochem Funct 28:45–51

    CAS  PubMed  Google Scholar 

  52. Hsiao EC, Boudignon BM, Chang WC, Bencsik M, Peng J, Nguyen TD, Manalac C, Halloran BP, Conklin BR, Nissenson RA (2008) Osteoblast expression of an engineered Gs-coupled receptor dramatically increases bone mass. Proc Natl Acad Sci USA 105:1209–1214

    CAS  PubMed  Google Scholar 

  53. Park H, No AL, Lee JM, Chen L, Lee SY, Lee DS, Yim M (2010) PDE4 inhibitor upregulates PTH-induced osteoclast formation via CRE-mediated COX-2 expression in osteoblasts. FEBS Lett 584:173–180

    CAS  PubMed  Google Scholar 

  54. Cho ES, Yu JH, Kim MS, Yim M (2004) Rolipram, a phosphodiesterase 4 inhibitor, stimulates osteoclast formation by inducing TRANCE expression in mouse calvarial cells. Arch Pharmacol Res 27:1258–1262

    CAS  Google Scholar 

  55. Kinoshita T, Kobayashi S, Ebara S, Yoshimura Y, Horiuchi H, Tsutsumimoto T, Wakabayashi S, Takaoka K (2000) Phosphodiesterase inhibitors, pentoxifylline and rolipram, increase bone mass mainly by promoting bone formation in normal mice. Bone 27:811–817

    CAS  PubMed  Google Scholar 

  56. Takami M, Cho ES, Lee SY, Kamijo R, Yim M (2005) Phosphodiesterase inhibitors stimulate osteoclast formation via TRANCE/RANKL expression in osteoblasts: possible involvement of ERK and p38 MAPK pathways. FEBS Lett 579:832–838

    CAS  PubMed  Google Scholar 

  57. Hausdorff WP, Lohse MJ, Bouvier M, Liggett SB, Caron MG, Lefkowitz RJ (1990) Two kinases mediate agonist-dependent phosphorylation and desensitization of the beta 2-adrenergic receptor. Symp Soc Exp Biol 44:225–240

    CAS  PubMed  Google Scholar 

  58. Lin FT, Daaka Y, Lefkowitz RJ (1998) Beta-arrestins regulate mitogenic signaling and clathrin-mediated endocytosis of the insulin-like growth factor I receptor. J Biol Chem 273:31640–31643

    CAS  PubMed  Google Scholar 

  59. Bliziotes M, Gunness M, Zhang X, Nissenson R, Wiren K (2000) Reduced G-protein-coupled-receptor kinase 2 activity results in impairment of osteoblast function. Bone 27:367–373

    CAS  PubMed  Google Scholar 

  60. Bliziotes M, Murtagh J, Wiren K (1996) Beta-adrenergic receptor kinase-like activity and beta-arrestin are expressed in osteoblastic cells. J Bone Miner Res 11:820–826

    CAS  PubMed  Google Scholar 

  61. Spurney RF, Flannery PJ, Garner SC, Athirakul K, Liu S, Guilak F, Quarles LD (2002) Anabolic effects of a G protein-coupled receptor kinase inhibitor expressed in osteoblasts. J Clin Investig 109:1361–1371

    CAS  PubMed  Google Scholar 

  62. Wang L, Liu S, Quarles LD, Spurney RF (2005) Targeted overexpression of G protein-coupled receptor kinase-2 in osteoblasts promotes bone loss. Am J Physiol Endocrinol Metab 288:E826–E834

    CAS  PubMed  Google Scholar 

  63. Bonnet N, Benhamou CL, Brunet-Imbault B, Arlettaz A, Horcajada MN, Richard O, Vico L, Collomp K, Courteix D (2005) Severe bone alterations under beta2 agonist treatments: bone mass, microarchitecture and strength analyses in female rats. Bone 37:622–633

    CAS  PubMed  Google Scholar 

  64. Bonnet N, Benhamou CL, Beaupied H, Laroche N, Vico L, Dolleans E, Courteix D (2007) Doping dose of salbutamol and exercise: deleterious effect on cancellous and cortical bones in adult rats. J Appl Physiol 102:1502–1509

    CAS  PubMed  Google Scholar 

  65. Kondo A, Mogi M, Koshihara Y, Togari A (2001) Signal transduction system for interleukin-6 and interleukin-11 synthesis stimulated by epinephrine in human osteoblasts and human osteogenic sarcoma cells. Biochem Pharmacol 61:319–326

    CAS  PubMed  Google Scholar 

  66. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234

    CAS  PubMed  Google Scholar 

  67. Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17:1235–1241

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G (2005) The molecular clock mediates leptin-regulated bone formation. Cell 122:803–815

    CAS  PubMed  Google Scholar 

  69. Bonnet N, Benhamou CL, Malaval L, Goncalves C, Vico L, Eder V, Pichon C, Courteix D (2008) Low dose beta-blocker prevents ovariectomy-induced bone loss in rats without affecting heart functions. J Cell Physiol 217:819–827

    CAS  PubMed  Google Scholar 

  70. Kajimura D, Hinoi E, Ferron M, Kode A, Riley KJ, Zhou B, Guo XE, Karsenty G (2011) Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual. J Exp Med 208:841–851

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Bonnet N, Pierroz DD, Ferrari SL (2008) Adrenergic control of bone remodeling and its implications for the treatment of osteoporosis. J Musculoskelet Neuron Interact 8:94–104

    CAS  Google Scholar 

  72. Pierroz DD, Bonnet N, Bianchi EN, Bouxsein ML, Baldock PA, Rizzoli R, Ferrari SL (2012) Deletion of beta-adrenergic receptor 1, 2, or both leads to different bone phenotypes and response to mechanical stimulation. J Bone Miner Res 27:1252–1262

    CAS  PubMed  Google Scholar 

  73. Swift JM, Hogan HA, Bloomfield SA (2013) Beta-1 adrenergic agonist mitigates unloading-induced bone loss by maintaining formation. Med Sci Sports Exerc. doi:10.1249/MSS.0b013e31828d39bc

  74. Bouxsein ML, Devlin MJ, Glatt V, Dhillon H, Pierroz DD, Ferrari SL (2009) Mice lacking beta-adrenergic receptors have increased bone mass but are not protected from deleterious skeletal effects of ovariectomy. Endocrinology 150:144–152

    CAS  PubMed  Google Scholar 

  75. Motyl KJ, Bishop KA, Demambro VE, Bornstein SA, Le P, Kawai M, Lotinun S, Horowitz MC, Baron R, Bouxsein ML, Rosen CJ (2013) Altered thermogenesis and impaired bone remodeling in Misty mice. J Bone Miner Res. doi:10.1002/jbmr.1943

  76. Bonnet N, Laroche N, Vico L, Dolleans E, Benhamou CL, Courteix D (2006) Dose effects of propranolol on cancellous and cortical bone in ovariectomized adult rats. J Pharmacol Exp Ther 318:1118–1127

    CAS  PubMed  Google Scholar 

  77. Kondo H, Nifuji A, Takeda S, Ezura Y, Rittling SR, Denhardt DT, Nakashima K, Karsenty G, Noda M (2005) Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. J Biol Chem 280:30192–30200

    CAS  PubMed  Google Scholar 

  78. Sato T, Arai M, Goto S, Togari A (2010) Effects of propranolol on bone metabolism in spontaneously hypertensive rats. J Pharmacol Exp Ther 334:99–105

    CAS  PubMed  Google Scholar 

  79. Wang TM, Hsu JF, Jee WS, Matthews JL (1993) Evidence for reduced cancellous bone mass in the spontaneously hypertensive rat. Bone Miner 20:251–264

    CAS  PubMed  Google Scholar 

  80. Gotoh M, Mizuno K, Ono Y, Takahashi M (2005) High blood pressure, bone-mineral loss and insulin resistance in women. Hypertens Res 28:565–570

    CAS  PubMed  Google Scholar 

  81. Young E, Korszun A (2009) Stress, the HPA axis and depressive illness. In: Larry RS (ed) Encyclopedia of neuroscience. Academic Press, Oxford, pp 543–548

    Google Scholar 

  82. Lindenfeld J, Crawford MH, O’Rourke RA, Levine SP, Montiel MM, Horwitz LD (1980) Adrenergic responsiveness after abrupt propranolol withdrawal in normal subjects and in patients with angina pectoris. Circulation 62:704–711

    CAS  PubMed  Google Scholar 

  83. Boudoulas H, Lewis RP, Kates RE, Dalamangas G (1977) Hypersensitivity to adrenergic stimulation after propranolol withdrawal in normal subjects. Ann Intern Med 87:433–436

    CAS  PubMed  Google Scholar 

  84. Granata AR (1985) Prolonged treatment with (+/−) propranolol induces supersensitivity to (l)noradrenaline in mesenteric arteries in the rat. Gen Pharmacol 16:463–468

    CAS  PubMed  Google Scholar 

  85. Karliner JS (1989) Effects of beta-blockade on beta-adrenergic receptors and signal transduction. J Cardiovasc Pharmacol 14(Suppl 5):S6–S12

    PubMed  Google Scholar 

  86. Tse J, Wrenn RW, Kuo JF (1980) Thyroxine-induced changes in characteristics and activities of beta-adrenergic receptors and adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate systems in the heart may be related to reputed catecholamine supersensitivity in hyperthyroidism. Endocrinology 107:6–16

    CAS  PubMed  Google Scholar 

  87. Aarons RD, Nies AS, Gal J, Hegstrand LR, Molinoff PB (1980) Elevation of beta-adrenergic receptor density in human lymphocytes after propranolol administration. J Clin Investig 65:949–957

    CAS  PubMed  Google Scholar 

  88. Ma Y, Nyman JS, Tao H, Moss HH, Yang X, Elefteriou F (2011) Beta2-adrenergic receptor signaling in osteoblasts contributes to the catabolic effect of glucocorticoids on bone. Endocrinology 152:1412–1422

    CAS  PubMed  Google Scholar 

  89. Robbins J, Hirsch C, Whitmer R, Cauley J, Harris T (2001) The association of bone mineral density and depression in an older population. J Am Geriatr Soc 49:732–736

    CAS  PubMed  Google Scholar 

  90. Cizza G, Primma S, Csako G (2009) Depression as a risk factor for osteoporosis. Trends Endocrinol Metab 20:367–373

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Michelson D, Stratakis C, Hill L, Reynolds J, Galliven E, Chrousos G, Gold P (1996) Bone mineral density in women with depression. N Engl J Med 335:1176–1181

    CAS  PubMed  Google Scholar 

  92. Yazici KM, Akinci A, Sutcu A, Ozcakar L (2003) Bone mineral density in premenopausal women with major depressive disorder. Psychiatry Res 117:271–275

    PubMed  Google Scholar 

  93. Kahl KG, Rudolf S, Stoeckelhuber BM, Dibbelt L, Gehl HB, Markhof K, Hohagen F, Schweiger U (2005) Bone mineral density, markers of bone turnover, and cytokines in young women with borderline personality disorder with and without comorbid major depressive disorder. Am J Psychiatry 162:168–174

    PubMed  Google Scholar 

  94. Ensrud KE, Blackwell T, Mangione CM, Bowman PJ, Bauer DC, Schwartz A, Hanlon JT, Nevitt MC, Whooley MA, Study of Osteoporotic Fractures Research G (2003) Central nervous system active medications and risk for fractures in older women. Arch Intern Med 163:949–957

    PubMed  Google Scholar 

  95. Esler M, Rumantir M, Wiesner G, Kaye D, Hastings J, Lambert G (2001) Sympathetic nervous system and insulin resistance: from obesity to diabetes. Am J Hypertens 14:304S–309S

    CAS  PubMed  Google Scholar 

  96. Lutgendorf SK, DeGeest K, Dahmoush L, Farley D, Penedo F, Bender D, Goodheart M, Buekers TE, Mendez L, Krueger G, Clevenger L, Lubaroff DM, Sood AK, Cole SW (2011) Social isolation is associated with elevated tumor norepinephrine in ovarian carcinoma patients. Brain Behav Immun 25:250–255

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Hughes JW, Watkins L, Blumenthal JA, Kuhn C, Sherwood A (2004) Depression and anxiety symptoms are related to increased 24-hour urinary norepinephrine excretion among healthy middle-aged women. J Psychosom Res 57:353–358

    PubMed  Google Scholar 

  98. Yirmiya R, Goshen I, Bajayo A, Kreisel T, Feldman S, Tam J, Trembovler V, Csernus V, Shohami E, Bab I (2006) Depression induces bone loss through stimulation of the sympathetic nervous system. Proc Natl Acad Sci USA 103:16876–16881

    CAS  PubMed  Google Scholar 

  99. Campbell JP, Karolak MR, Ma Y, Perrien DS, Masood-Campbell SK, Penner NL, Munoz SA, Zijlstra A, Yang X, Sterling JA, Elefteriou F (2012) Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol 10:e1001363

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Powe DG, Voss MJ, Zanker KS, Habashy HO, Green AR, Ellis IO, Entschladen F (2010) Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget 1:628–638

    PubMed  Google Scholar 

  101. Ganz PA, Habel LA, Weltzien EK, Caan BJ, Cole SW (2011) Examining the influence of beta blockers and ACE inhibitors on the risk for breast cancer recurrence: results from the LACE cohort. Breast Cancer Res Treat 129:549–556

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Melhem-Bertrandt A, Chavez-Macgregor M, Lei X, Brown EN, Lee RT, Meric-Bernstam F, Sood AK, Conzen SD, Hortobagyi GN, Gonzalez-Angulo AM (2011) Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol 29:2645–2652

    CAS  PubMed  Google Scholar 

  103. Barron TI, Connolly RM, Sharp L, Bennett K, Visvanathan K (2011) Beta blockers and breast cancer mortality: a population-based study. J Clin Oncol 29:2635–2644

    CAS  PubMed  Google Scholar 

  104. Hinoi E, Gao N, Jung DY, Yadav V, Yoshizawa T, Myers MG Jr, Chua SC Jr, Kim JK, Kaestner KH, Karsenty G (2008) The sympathetic tone mediates leptin’s inhibition of insulin secretion by modulating osteocalcin bioactivity. J Cell Biol 183:1235–1242

    CAS  PubMed  Google Scholar 

  105. Altman JD, Trendelenburg AU, MacMillan L, Bernstein D, Limbird L, Starke K, Kobilka BK, Hein L (1999) Abnormal regulation of the sympathetic nervous system in alpha2A-adrenergic receptor knockout mice. Mol Pharmacol 56:154–161

    CAS  PubMed  Google Scholar 

  106. Han J, Zou Z, Zhu C, Deng J, Wang J, Ran X, Shi C, Ai G, Li R, Cheng T, Su Y (2009) DNA synthesis of rat bone marrow mesenchymal stem cells through alpha1-adrenergic receptors. Arch Biochem Biophys 490:96–102

    CAS  PubMed  Google Scholar 

  107. Nishiura T, Abe K (2007) Alpha1-adrenergic receptor stimulation induces the expression of receptor activator of nuclear factor kappaB ligand gene via protein kinase C and extracellular signal-regulated kinase pathways in MC3T3-E1 osteoblast-like cells. Arch Oral Biol 52:778–785

    CAS  PubMed  Google Scholar 

  108. Huang HH, Brennan TC, Muir MM, Mason RS (2009) Functional alpha1- and beta2-adrenergic receptors in human osteoblasts. J Cell Physiol 220:267–275

    CAS  PubMed  Google Scholar 

  109. Choi YJ, Lee JY, Lee SJ, Chung CP, Park YJ (2011) Alpha-adrenergic blocker mediated osteoblastic stem cell differentiation. Biochem Biophys Res Commun 416:232–238

    CAS  PubMed  Google Scholar 

  110. Idris AI, van ‘t Hof RJ, Greig IR, Ridge SA, Baker D, Ross RA, Ralston SH (2005) Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med 11:774–779

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Tam J, Ofek O, Fride E, Ledent C, Gabet Y, Muller R, Zimmer A, Mackie K, Mechoulam R, Shohami E, Bab I (2006) Involvement of neuronal cannabinoid receptor CB1 in regulation of bone mass and bone remodeling. Mol Pharmacol 70:786–792

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Wong PK, Christie JJ, Wark JD (2007) The effects of smoking on bone health. Clin Sci 113:233–241

    CAS  PubMed  Google Scholar 

  113. Walker LM, Preston MR, Magnay JL, Thomas PB, El Haj AJ (2001) Nicotinic regulation of c-fos and osteopontin expression in human-derived osteoblast-like cells and human trabecular bone organ culture. Bone 28:603–608

    CAS  PubMed  Google Scholar 

  114. Rothem DE, Rothem L, Soudry M, Dahan A, Eliakim R (2009) Nicotine modulates bone metabolism-associated gene expression in osteoblast cells. J Bone Miner Metab 27:555–561

    CAS  PubMed  Google Scholar 

  115. Bajayo A, Bar A, Denes A, Bachar M, Kram V, Attar-Namdar M, Zallone A, Kovacs KJ, Yirmiya R, Bab I (2012) Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual. Proc Natl Acad Sci USA 109:15455–15460

    CAS  PubMed  Google Scholar 

  116. Shi Y, Oury F, Yadav VK, Wess J, Liu XS, Guo XE, Murshed M, Karsenty G (2010) Signaling through the M(3) muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab 11:231–238

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Reid IR, Gamble GD, Grey AB, Black DM, Ensrud KE, Browner WS, Bauer DC (2005) Beta-blocker use, BMD, and fractures in the study of osteoporotic fractures. J Bone Miner Res 20:613–618

    CAS  PubMed  Google Scholar 

  118. Rejnmark L, Vestergaard P, Kassem M, Christoffersen BR, Kolthoff N, Brixen K, Mosekilde L (2004) Fracture risk in perimenopausal women treated with beta-blockers. Calcif Tissue Int 75:365–372

    CAS  PubMed  Google Scholar 

  119. Graham S, Hammond-Jones D, Gamie Z, Polyzois I, Tsiridis E, Tsiridis E (2008) The effect of beta-blockers on bone metabolism as potential drugs under investigation for osteoporosis and fracture healing. Expert Opin Investig Drugs 17:1281–1299

    CAS  PubMed  Google Scholar 

  120. Reid IR (2008) Effects of beta-blockers on fracture risk. J Musculoskelet Neuron Interact 8:105–110

    CAS  Google Scholar 

  121. Bonnet N, Gadois C, McCloskey E, Lemineur G, Lespessailles E, Courteix D, Benhamou CL (2007) Protective effect of beta blockers in postmenopausal women: influence on fractures, bone density, micro and macroarchitecture. Bone 40:1209–1216

    CAS  PubMed  Google Scholar 

  122. Reid IR, Lucas J, Wattie D, Horne A, Bolland M, Gamble GD, Davidson JS, Grey AB (2005) Effects of a beta-blocker on bone turnover in normal postmenopausal women: a randomized controlled trial. J Clin Endocrinol Metab 90:5212–5216

    CAS  PubMed  Google Scholar 

  123. Levasseur R, Legrand E, Chappard D, Audran M (2005) Central control of bone mass: potential therapeutic implications. Jt Bone Spine 72:474–476

    Google Scholar 

  124. Goldstein DS, Holmes C, Sharabi Y, Brentzel S, Eisenhofer G (2003) Plasma levels of catechols and metanephrines in neurogenic orthostatic hypotension. Neurology 60:1327–1332

    CAS  PubMed  Google Scholar 

  125. Robertson D, Haile V, Perry SE, Robertson RM, Phillips JA III, Biaggioni I (1991) Dopamine beta-hydroxylase deficiency. A genetic disorder of cardiovascular regulation. Hypertension 18:1–8

    CAS  PubMed  Google Scholar 

  126. Biaggioni I, Robertson D (1987) Endogenous restoration of noradrenaline by precursor therapy in dopamine-beta-hydroxylase deficiency. Lancet 2:1170–1172

    CAS  PubMed  Google Scholar 

  127. Man in ‘t Veld AJ, Boomsma F, Moleman P, Schalekamp MA (1987) Congenital dopamine-beta-hydroxylase deficiency. A novel orthostatic syndrome. Lancet 1:183–188

    PubMed  Google Scholar 

  128. Tinetti ME, Speechley M, Ginter SF (1988) Risk factors for falls among elderly persons living in the community. N Engl J Med 319:1701–1707

    CAS  PubMed  Google Scholar 

  129. Graafmans WC, Ooms ME, Hofstee HM, Bezemer PD, Bouter LM, Lips P (1996) Falls in the elderly: a prospective study of risk factors and risk profiles. Am J Epidemiol 143:1129–1136

    CAS  PubMed  Google Scholar 

  130. Robertson D (1999) The epidemic of orthostatic tachycardia and orthostatic intolerance. Am J Med Sci 317:75–77

    CAS  PubMed  Google Scholar 

  131. Low PA, Opfer-Gehrking TL, Textor SC, Benarroch EE, Shen WK, Schondorf R, Suarez GA, Rummans TA (1995) Postural tachycardia syndrome (POTS). Neurology 45:S19–S25

    CAS  PubMed  Google Scholar 

  132. Benarroch EE (2012) Postural tachycardia syndrome: a heterogeneous and multifactorial disorder. Mayo Clin Proc 87:1214–1225

    PubMed  Google Scholar 

  133. de Vries F, Pouwels S, Bracke M, Leufkens HG, Cooper C, Lammers JW, van Staa TP (2007) Use of beta-2 agonists and risk of hip/femur fracture: a population-based case-control study. Pharmacoepidemiol Drug Saf 16:612–619

    PubMed  Google Scholar 

  134. Veldhuis-Vlug AG, El Mahdiui M, Endert E, Heijboer AC, Fliers E, Bisschop PH (2012) Bone resorption is increased in pheochromocytoma patients and normalizes following adrenalectomy. J Clin Endocrinol Metab 97:E2093–E2097

    CAS  PubMed  Google Scholar 

  135. Kado DM, Lui LY, Cummings SR, Study of Osteoporotic Fractures Research Group (2002) Rapid resting heart rate: a simple and powerful predictor of osteoporotic fractures and mortality in older women. J Am Geriatr Soc 50:455–460

    PubMed  Google Scholar 

  136. Tosun A, Dogru MT, Aydn G, Keles I, Arslan A, Guneri M, Orkun S, Ebinc H (2011) Does autonomic dysfunction exist in postmenopausal osteoporosis? Am J Phys Med Rehabil 90:1012–1019

    PubMed  Google Scholar 

  137. Farr JN, Charkoudian N, Barnes JN, Monroe DG, McCready LK, Atkinson EJ, Amin S, Melton LJ III, Joyner MJ, Khosla S (2012) Relationship of sympathetic activity to bone microstructure, turnover, and plasma osteopontin levels in women. J Clin Endocrinol Metab 97:4219–4227

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Elefteriou.

Additional information

The authors report that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elefteriou, F., Campbell, P. & Ma, Y. Control of Bone Remodeling by the Peripheral Sympathetic Nervous System. Calcif Tissue Int 94, 140–151 (2014). https://doi.org/10.1007/s00223-013-9752-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9752-4

Keywords

Navigation