Skip to main content
Log in

On-line visual control of grasping movements

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Even though it is recognized that vision plays an important role in grasping movements, it is not yet fully understood how the visual feedback of the hand contributes to the on-line control. Visual feedback could be used to shape the posture of the hand and fingers, to adjust the trajectory of the moving hand, or a combination of both. Here, we used a dynamic perturbation method that altered the position of the visual feedback relative to the actual position of the thumb and index finger to virtually increase or decrease the visually sensed grip aperture. Subjects grasped objects in a virtual 3D environment with haptic feedback and with visual feedback provided by small virtual spheres anchored to the their unseen fingertips. We found that the effects of the visually perturbed grip aperture arose preeminently late in the movement when the hand was in the object’s proximity. The on-line visual feedback assisted both the scaling of the grip aperture to properly conform it to the object’s dimension and the transport of the hand to correctly position the digits on the object’s surface. However, the extent of these compensatory adjustments was contingent on the viewing geometry. The visual control of the actual grip aperture was mainly observed when the final grasp axis orientation was approximately perpendicular to the viewing direction. On the contrary, when the final grasp axis was aligned with the viewing direction, the visual control was predominantly concerned with the guidance of the digit toward the visible final contact point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ansuini C, Santello M, Tubaldi F, Massaccesi S, Castiello U (2007) Control of hand shaping in response to object shape perturbation. Exp Brain Res 180:85–96

    Article  PubMed  Google Scholar 

  • Bernardi NF, Marino BFM, Maravita A, Castelnuovo G, Tebano R, Bricolo E (2013) Grasping in wonderland: altering the visual size of the body recalibrates the body schema. Exp Brain Res 226:585–594

    Article  CAS  PubMed  Google Scholar 

  • Bock O, Jüngling S (1999) Reprogramming of grip aperture in a double-step virtual grasping paradigm. Exp Brain Res 125:61–66

    Article  CAS  PubMed  Google Scholar 

  • Bozzacchi C, Domini F (2015) Lack of depth constancy for grasping movements in both virtual and real environments. J Neurophysiol 114:2242–2248

    Article  PubMed  Google Scholar 

  • Bozzacchi C, Volcic R, Domini F (2014) Effect of visual and haptic feedback on grasping movements. J Neurophysiol 112:3189–3196

    Article  PubMed  Google Scholar 

  • Bozzacchi C, Volcic R, Domini F (2016) Grasping in absence of feedback: systematic biases endure extensive training. Exp Brain Res 234:255–265

    Article  PubMed  Google Scholar 

  • Bradshaw MF, Elliott KM, Watt SJ, Hibbard PB, Davies IRL, Simpson PJ (2004) Binocular cues and the control of prehension. Spat Vis 17:95–110

    Article  PubMed  Google Scholar 

  • Brouwer AM, Franz VH, Gegenfurtner KR (2009) Differences in fixations between grasping and viewing objects. J Vis 9(18):1–24

    Google Scholar 

  • Carnahan H, Goodale MA, Marteniuk RG (1993) Grasping versus pointing and the differential use of visual feedback. Hum Mov Sci 12:219–234

    Article  Google Scholar 

  • Castiello U, Bennett KMB, Stelmach GE (1993) Reach to grasp: the natural response to perturbation of object size. Exp Brain Res 94:163–178

    Article  CAS  PubMed  Google Scholar 

  • Castiello U, Bennett KMB, Chambers H (1998) Reach to grasp: the response to a simultaneous perturbation of object position and size. Exp Brain Res 120:31–40

    Article  CAS  PubMed  Google Scholar 

  • Cavina-Pratesi C, Hesse C (2013) Why do the eyes prefer the index finger? Simultaneous recording of eye and hand movements during precision grasping. J Vis 13(5):1–15

    Article  Google Scholar 

  • Chen Z, Saunders JA (2015) Online processing of shape information for control of grasping. Exp Brain Res 233:3109–3124

    Article  PubMed  Google Scholar 

  • Churchill A, Hopkins B, Rönnqvist L, Vogt S (2000) Vision of the hand and environmental context in human prehension. Exp Brain Res 134:81–89

    Article  CAS  PubMed  Google Scholar 

  • Connolly JD, Goodale MA (1999) The role of visual feedback of hand position in the control of manual prehension. Exp Brain Res 125:281–286

    Article  CAS  PubMed  Google Scholar 

  • Cuijpers RH, Smeets JBJ, Brenner E (2004) On the relation between object shape and grasping kinematics. J Neurophysiol 91:2598–2606

    Article  PubMed  Google Scholar 

  • Cuijpers RH, Brenner E, Smeets JBJ (2006) Grasping reveals visual misjudgements of shape. Exp Brain Res 175:32–44

    Article  PubMed  Google Scholar 

  • de Grave DDJ, Hesse C, Brouwer AM, Franz VH (2008) Fixation locations when grasping partly occluded objects. J Vis 8(5):1–11

    Article  PubMed  Google Scholar 

  • Desanghere L, Marotta JJ (2011) “Graspability” of objects affects gaze patterns during perception and action tasks. Exp Brain Res 212:177–187

    Article  PubMed  Google Scholar 

  • Desmurget M, Prablanc C (1997) Postural control of three-dimensional prehension movements. J Neurophysiol 77:452–464

    CAS  PubMed  Google Scholar 

  • Desmurget M, Prablanc C, Arzi M, Rossetti Y, Paulignan Y, Urquizar C (1996) Integrated control of hand transport and orientation during prehension movements. Exp Brain Res 110:265–278

    Article  CAS  PubMed  Google Scholar 

  • Domini F, Caudek C (2013) Perception and action without veridical metric reconstruction: an affine approach. In: Dickinson SJ, Pizlo Z (eds) Shape perception in human and computer vision. Springer, London, pp 285–298

    Chapter  Google Scholar 

  • Dubrowski A, Bock O, Carnahan H, Jüngling S (2002) The coordination of hand transport and grasp formation during single- and double-perturbed human prehension movements. Exp Brain Res 145:365–371

    Article  CAS  PubMed  Google Scholar 

  • Eloka O, Franz VH (2011) Effects of object shape on the visual guidance of action. Vision Res 51:925–931

    Article  PubMed  Google Scholar 

  • Fan J, He J, Helms Tillery SI (2006) Control of hand orientation and arm movement during reach and grasp. Exp Brain Res 171:283–296

    Article  PubMed  Google Scholar 

  • Fantoni C, Caudek C, Domini F (2014) Misperception of rigidity from actively generated optic flow. J Vis 14:1–22

    Article  Google Scholar 

  • Fukui T, Inui T (2006) The effect of viewing the moving limb and target object during the early phase of movement on the online control of grasping. Hum Mov Sci 25:349–371

    Article  PubMed  Google Scholar 

  • Gaveau V, Pisella L, Priot AE, Fukui T, Rossetti Y, Pélisson D, Prablanc C (2014) Automatic online control of motor adjustments in reaching and grasping. Neuropsychologia 55:25–40

    Article  PubMed  Google Scholar 

  • Gentilucci M, Chieffi S, Scarpa M, Castiello U (1992) Temporal coupling between transport and grasp components during prehension movements: effects of visual perturbation. Behav Brain Res 47:71–82

    Article  CAS  PubMed  Google Scholar 

  • Gentilucci M, Toni I, Chieffi S, Pavesi G (1994) The role of proprioception in the control of prehension movements: a kinematic study in a peripherally deafferented patient and in normal subjects. Exp Brain Res 99:483–500

    Article  CAS  PubMed  Google Scholar 

  • Gepshtein S, Banks MS (2003) Viewing geometry determines how vision and haptics combine in size perception. Curr Biol 13:483–488

    Article  CAS  PubMed  Google Scholar 

  • Glover S (2004) Separate visual representations in the planning and control of action. Behav Brain Sci 27:3–78

    PubMed  Google Scholar 

  • Glover S, Miall RC, Rushworth MF (2005) Parietal rTMS disrupts the initiation but not the execution of on-line adjustments to a perturbation of object size. J Cogn Neurosci 17:124–136

    Article  PubMed  Google Scholar 

  • Grant S (2015) Gaze-grasp coordination in obstacle avoidance: differences between binocular and monocular viewing. Exp Brain Res 233:3489–3505

    Article  PubMed  Google Scholar 

  • Gréa H, Desmurget M, Prablanc C (2000) Postural invariance in three-dimensional reaching and grasping movements. Exp Brain Res 134:155–162

    Article  PubMed  Google Scholar 

  • Haggard P, Wing A (1997) On the hand transport component of prehensile movements. J Mot Behav 29:282–287

    Article  CAS  PubMed  Google Scholar 

  • Hesse C, Franz VH (2009) Corrective processes in grasping after perturbations of object size. J Mot Behav 41:253–273

    Article  PubMed  Google Scholar 

  • Jakobson LS, Goodale MA (1991) Factors affecting higher-order movement planning: a kinematic analysis of human prehension. Exp Brain Res 86:199–208

    Article  CAS  PubMed  Google Scholar 

  • Jeannerod M (1984) The timing of natural prehension movements. J Mot Behav 16:235–254

    Article  CAS  PubMed  Google Scholar 

  • Johnston EB (1991) Systematic distortions of shape from stereopsis. Vision Res 31:1351–1360

    Article  CAS  PubMed  Google Scholar 

  • Karok S, Newport R (2010) The continuous updating of grasp in response to dynamic changes in object size, hand size and distractor proximity. Neuropsychologia 48:3891–3900

    Article  PubMed  Google Scholar 

  • Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie CL, Marteniuk RG, Dugas C, Liske D, Eickmeier B (1987) Three-dimensional movement trajectories in Fitts’ task: implications for control. Q J Exp Psychol A 39:629–647

    Article  Google Scholar 

  • Marino BFM, Stucchi N, Nava E, Haggard P, Maravita A (2010) Distorting the visual size of the hand affects hand pre-shaping during grasping. Exp Brain Res 202:499–505

    Article  PubMed  Google Scholar 

  • McKee SP, Levi DM, Bowne SF (1990) The imprecision of stereopsis. Vision Res 30:1763–1779

    Article  CAS  PubMed  Google Scholar 

  • Melmoth DR, Grant S (2006) Advantages of binocular vision for the control of reaching and grasping. Exp Brain Res 171:371–388

    Article  PubMed  Google Scholar 

  • Melmoth DR, Storoni M, Todd G, Finlay AL, Grant S (2007) Dissociation between vergence and binocular disparity cues in the control of prehension. Exp Brain Res 183:283–298

    Article  PubMed  Google Scholar 

  • Morgan MJ (1989) Vision of solid objects. Nature 339:101–103

    Article  CAS  PubMed  Google Scholar 

  • Nicolini C, Fantoni C, Mancuso G, Volcic R, Domini F (2014) A framework for the study of vision in active observers. In: Rogowitz BE, Pappas TN, de Ridder H (eds) Human vision and electronic imaging XIX, Proc SPIE, vol 9014, p 901414

  • Norman JF, Todd JT, Perotti VJ, Tittle JS (1996) The visual perception of three-dimensional length. J Exp Psychol Hum Percept Perform 22:173–186

    Article  CAS  PubMed  Google Scholar 

  • Paillard J (1996) Fast and slow feedback loops for the visual correction of spatial errors in a pointing task: a reappraisal. Can J Physiol Pharmacol 74:401–417

    Article  CAS  PubMed  Google Scholar 

  • Paulignan Y, Jeannerod M, MacKenzie C, Marteniuk R (1991a) Selective perturbation of visual input during prehension movements: 2. The effects of changing object size. Exp Brain Res 87:407–420

    Article  CAS  PubMed  Google Scholar 

  • Paulignan Y, MacKenzie C, Marteniuk R, Jeannerod M (1991b) Selective perturbation of visual input during prehension movements: 1. The effects of changing object position. Exp Brain Res 83:501–512

    Article  Google Scholar 

  • Rand MK, Lemay M, Squire LM, Shimansky YP, Stelmach GE (2007) Role of vision in aperture closure control during reach-to-grasp movements. Exp Brain Res 181:447–460

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards W (2009) Configuration stereopsis: a new look at the depth-disparity relation. Spat Vis 22:91–103

    Article  PubMed  Google Scholar 

  • Saunders JA, Knill DC (2003) Humans use continuous visual feedback from the hand to control fast reaching movements. Exp Brain Res 152:341–352

    Article  PubMed  Google Scholar 

  • Saunders JA, Knill DC (2004) Visual feedback control of hand movements. J Neurosci 24:3223–3234

    Article  CAS  PubMed  Google Scholar 

  • Schettino LF, Adamovich SV, Poizner H (2003) Effects of object shape and visual feedback on hand configuration during grasping. Exp Brain Res 151:158–166

    Article  PubMed  Google Scholar 

  • Schot WD, Brenner E, Smeets JBJ (2010) Robust movement segmentation by combining multiple sources of information. J Neurosci Methods 187:147–155

    Article  PubMed  Google Scholar 

  • Scott SH, Cluff T, Lowrey CR, Takei T (2015) Feedback control during voluntary motor actions. Curr Opin Neurobiol 33:85–94

    Article  CAS  PubMed  Google Scholar 

  • Tunik E, Frey SH, Grafton ST (2005) Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci 8:505–511

    CAS  PubMed  Google Scholar 

  • van der Kamp C, Bongers RM, Zaal FTJM (2009) Effects of changing object size during prehension. J Mot Behav 41:427–435

    Article  PubMed  Google Scholar 

  • Verheij R, Brenner E, Smeets JBJ (2014) The influence of target object shape on maximum grip aperture in human grasping movements. Exp Brain Res 232:3569–3578

    Article  PubMed  Google Scholar 

  • Volcic R, Domini F (2014) The visibility of contact points influences grasping movements. Exp Brain Res 232:2997–3005

    Article  PubMed  Google Scholar 

  • Volcic R, Fantoni C, Caudek C, Assad JJ, Domini F (2013) Visuomotor adaptation changes stereoscopic depth perception and tactile discrimination. J Neurosci 33:17081–17088

    Article  CAS  PubMed  Google Scholar 

  • Voudouris D, Smeets JBJ, Brenner E (2013) Ultra-fast selection of grasping points. J Neurophysiol 110:1484–1489

    Article  CAS  PubMed  Google Scholar 

  • Voudouris D, Smeets JBJ, Brenner E (2016) Fixation biases towards the index finger in almost-natural grasping. PLoS One 11(e0146):864

    Google Scholar 

  • Wallach H, Zuckerman C (1963) The constancy of stereoscopic depth. Am J Psychol 76:404–412

    Article  CAS  PubMed  Google Scholar 

  • Watt SJ, Bradshaw MF (2003) The visual control of reaching and grasping: binocular disparity and motion parallax. J Exp Psychol Hum Percept Perform 29:404–415

    Article  PubMed  Google Scholar 

  • Wing AM, Fraser C (1983) The contribution of the thumb to reaching movements. Q J Exp Psychol 35:297–309

    Article  CAS  Google Scholar 

  • Winges SA, Weber DJ, Santello M (2003) The role of vision on hand preshaping during reach to grasp. Exp Brain Res 152:489–498

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Volcic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volcic, R., Domini, F. On-line visual control of grasping movements. Exp Brain Res 234, 2165–2177 (2016). https://doi.org/10.1007/s00221-016-4620-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-016-4620-x

Keywords

Navigation