Skip to main content
Log in

The influence of proprioceptive state on learning control of reach dynamics

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The motor system shows a remarkable capacity to generalize learned behavior to new contexts while simultaneously permitting learning of multiple and sometimes conflicting skills. To examine the influence of proprioceptive state on this capacity, we compared the effectiveness of changes in workspace location and limb orientation (horizontal vs. parasagittal plane posture) in facilitating learning of opposing dynamic force-field perturbations. When opposing fields were encountered in similar workspace positions and limb orientations, subjects failed to learn the two tasks. In contrast, differences in initial limb proprioceptive state were sufficient for significant learning to take place. The extent of learning was similar when the two fields were encountered in different arm orientations in a similar workspace location as compared to when learning took place in spatially separated workspace locations, consistent with the generalization of learning mainly in intrinsic joint coordinates. In keeping with these observations, examination of how trial-to-trial adaptation generalized showed that generalization tended to be greater across similar limb postures. However, when the two fields were encountered in distinct spatial locations, the extent of generalization of adaptation to one field depended on the limb orientation in which the other field was encountered. These results suggest that three-dimensional proprioceptive limb state plays an important role in modulating generalization patterns so as to permit the best compromise between broad generalization and the simultaneous learning of conflicting skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Addou T, Krouchev N, Kalaska JF (2011) Colored context cues can facilitate the ability to learn and to switch between multiple dynamical force fields. J Neurophysiol 106:163–183

    Article  PubMed  Google Scholar 

  • Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456–458

    Article  CAS  PubMed  Google Scholar 

  • Andersen RA, Bracewell RM, Barash S, Gnadt JW, Fogassi L (1990) Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque. J Neurosci 10:1176–1196

    CAS  PubMed  Google Scholar 

  • Arce F, Novick I, Mandelblat-Cerf Y, Israel Z, Ghez C, Vaadia E (2010a) Combined adaptiveness of specific motor cortical ensembles underlies learning. J Neurosci 30:5415–5425

    Article  CAS  PubMed  Google Scholar 

  • Arce F, Novick I, Mandelblat-Cerf Y, Vaadia E (2010b) Neuronal correlates of memory formation in motor cortex after adaptation to force field. J Neurosci 30:9189–9198

    Article  CAS  PubMed  Google Scholar 

  • Berniker M, Franklin DW, Flanagan JR, Wolpert DM, Kording K (2014) Motor learning of novel dynamics is not represented in a single global coordinate system: evaluation of mixed coordinate representations and local learning. J Neurophysiol 111:1165–1182

    Article  PubMed Central  PubMed  Google Scholar 

  • Brashers-Krug T, Shadmehr R, Bizzi E (1996) Consolidation in human motor memory. Nature 382:252–255

    Article  CAS  PubMed  Google Scholar 

  • Brayanov JB, Press DZ, Smith MA (2012) Motor memory is encoded as a gain-field combination of intrinsic and extrinsic action representations. J Neurosci 32:14951–14965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caithness G, Osu R, Bays P et al (2004) Failure to consolidate the consolidation theory of learning for sensorimotor adaptation tasks. J Neurosci 24:8662–8671

    Article  CAS  PubMed  Google Scholar 

  • Caminiti R, Johnson PB, Urbano A (1990) Making arm movements within different parts of space: dynamic aspects in the primate motor cortex. J Neurosci 10:2039–2058

    CAS  PubMed  Google Scholar 

  • Castro LN, Wu HG, Smith MA (2011) Adaptation to dynamic environments displays local generalization for voluntary reaching movements. In: Conference proceedings of the IEEE engineering in medicine and biology society, pp 4050–4052

  • Cherian A, Fernandes HL, Miller LE (2013) Primary motor cortical discharge during force field adaptation reflects muscle-like dynamics. J Neurophysiol 110:768–783

    Article  PubMed Central  PubMed  Google Scholar 

  • Conditt MA, Gandolfo F, Mussa-Ivaldi FA (1997) The motor system does not learn the dynamics of the arm by rote memorization of past experience. J Neurophysiol 78:554–560

    CAS  PubMed  Google Scholar 

  • Criscimagna-Hemminger SE, Donchin O, Gazzaniga MS, Shadmehr R (2003) Learned dynamics of reaching movements generalize from dominant to nondominant arm. J Neurophysiol 89:168–176

    Article  PubMed  Google Scholar 

  • Donchin O, Francis JT, Shadmehr R (2003) Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor control. J Neurosci 23:9032–9045

    CAS  PubMed  Google Scholar 

  • Gandolfo F, Mussa-Ivaldi FA, Bizzi E (1996) Motor learning by field approximation. Proc Natl Acad Sci USA 93:3843–3846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gandolfo F, Li C, Benda BJ, Schioppa CP, Bizzi E (2000) Cortical correlates of learning in monkeys adapting to a new dynamical environment. Proc Natl Acad Sci USA 97:2259–2263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2:1527–1537

    CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Caminiti R, Kalaska JF (1984) Static spatial effects in motor cortex and area 5: quantitative relations in a two-dimensional space. Exp Brain Res 54:446–454

    Article  CAS  PubMed  Google Scholar 

  • Green AM, Labelle J-P, Shadmehr R, Kalaska JF (2006) The influence of proprioceptive state on learning control of reach dynamics. In: Society for neuroscience meeting, vol Program No. 57.23. Neuroscience Meeting Planner, Atlanta, GA

  • Hirashima M, Nozaki D (2012) Distinct motor plans form and retrieve distinct motor memories for physically identical movements. Curr Biol 22:432–436

    Article  CAS  PubMed  Google Scholar 

  • Howard IS, Ingram JN, Wolpert DM (2010) Context-dependent partitioning of motor learning in bimanual movements. J Neurophysiol 104:2082–2091

    Article  PubMed Central  PubMed  Google Scholar 

  • Howard IS, Wolpert DM, Franklin DW (2013) The effect of contextual cues on the encoding of motor memories. J Neurophysiol 109:2632–2644

    Article  PubMed Central  PubMed  Google Scholar 

  • Hwang EJ, Shadmehr R (2005) Internal models of limb dynamics and the encoding of limb state. J Neural Eng 2:S266–S278

    Article  PubMed Central  PubMed  Google Scholar 

  • Hwang EJ, Donchin O, Smith MA, Shadmehr R (2003) A gain-field encoding of limb position and velocity in the internal model of arm dynamics. PLoS Biol 1:E25

    Article  PubMed Central  PubMed  Google Scholar 

  • Hwang EJ, Smith MA, Shadmehr R (2006) Dissociable effects of the implicit and explicit memory systems on learning control of reaching. Exp Brain Res 173:425–437

    Article  PubMed Central  PubMed  Google Scholar 

  • Kakei S, Hoffman DS, Strick PL (1999) Muscle and movement representations in the primary motor cortex. Science 285:2136–2139

    Article  CAS  PubMed  Google Scholar 

  • Kalaska JF (2009) From intention to action: motor cortex and the control of reaching movements. Adv Exp Med Biol 629:139–178

    Article  PubMed  Google Scholar 

  • Kalaska JF, Cohen DA, Hyde ML, Prud’homme M (1989) A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. J Neurosci 9:2080–2102

    CAS  PubMed  Google Scholar 

  • Karniel A, Mussa-Ivaldi FA (2002) Does the motor control system use multiple models and context switching to cope with a variable environment? Exp Brain Res 143:520–524

    Article  CAS  PubMed  Google Scholar 

  • Krakauer JW, Ghilardi MF, Ghez C (1999) Independent learning of internal models for kinematic and dynamic control of reaching. Nat Neurosci 2:1026–1031

    Article  CAS  PubMed  Google Scholar 

  • Lackner JR, Dizio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 72:299–313

    CAS  PubMed  Google Scholar 

  • Li CS, Padoa-Schioppa C, Bizzi E (2001) Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron 30:593–607

    Article  CAS  PubMed  Google Scholar 

  • Malfait N, Ostry DJ (2004) Is interlimb transfer of force-field adaptation a cognitive response to the sudden introduction of load? J Neurosci 24:8084–8089

    Article  CAS  PubMed  Google Scholar 

  • Malfait N, Shiller DM, Ostry DJ (2002) Transfer of motor learning across arm configurations. J Neurosci 22:9656–9660

    CAS  PubMed  Google Scholar 

  • Malfait N, Gribble PL, Ostry DJ (2005) Generalization of motor learning based on multiple field exposures and local adaptation. J Neurophysiol 93:3327–3338

    Article  PubMed  Google Scholar 

  • Mussa-Ivaldi FA, Giszter SF (1992) Vector field approximation: a computational paradigm for motor control and learning. Biol Cybern 67:491–500

    Article  CAS  PubMed  Google Scholar 

  • Nozaki D, Kurtzer I, Scott SH (2006) Limited transfer of learning between unimanual and bimanual skills within the same limb. Nat Neurosci 9:1364–1366

    Article  CAS  PubMed  Google Scholar 

  • Poggio T, Bizzi E (2004) Generalization in vision and motor control. Nature 431:768–774

    Article  CAS  PubMed  Google Scholar 

  • Pouget A, Snyder LH (2000) Computational approaches to sensorimotor transformations. Nat Neurosci 3(Suppl):1192–1198

    Article  CAS  PubMed  Google Scholar 

  • Scott SH, Kalaska JF (1997) Reaching movements with similar hand paths but different arm orientations. I. Activity of individual cells in motor cortex. J Neurophysiol 77:826–852

    CAS  PubMed  Google Scholar 

  • Sergio LE, Kalaska JF (2003) Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation. J Neurophysiol 89:212–228

    Article  PubMed  Google Scholar 

  • Sergio LE, Hamel-Paquet C, Kalaska JF (2005) Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks. J Neurophysiol 94:2353–2378

    Article  PubMed  Google Scholar 

  • Shadmehr R (2004) Generalization as a behavioral window to the neural mechanisms of learning internal models. Hum Mov Sci 23:543–568

    Article  PubMed Central  PubMed  Google Scholar 

  • Shadmehr R, Moussavi ZM (2000) Spatial generalization from learning dynamics of reaching movements. J Neurosci 20:7807–7815

    CAS  PubMed  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    CAS  PubMed  Google Scholar 

  • Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108

    Article  CAS  PubMed  Google Scholar 

  • Sing GC, Joiner WM, Nanayakkara T, Brayanov JB, Smith MA (2009) Primitives for motor adaptation reflect correlated neural tuning to position and velocity. Neuron 64:575–589

    Article  CAS  PubMed  Google Scholar 

  • Soechting JF, Buneo CA, Herrmann U, Flanders M (1995) Moving effortlessly in three dimensions: does Donders’ law apply to arm movement? J Neurosci 15:6271–6280

    CAS  PubMed  Google Scholar 

  • Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. Nature 407:742–747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thoroughman KA, Taylor JA (2005) Rapid reshaping of human motor generalization. J Neurosci 25:8948–8953

    Article  CAS  PubMed  Google Scholar 

  • Trumbower RD, Krutky MA, Yang BS, Perreault EJ (2009) Use of self-selected postures to regulate multi-joint stiffness during unconstrained tasks. PLoS One 4:e5411. doi:10.1371/journal.pone.0005411

    Article  PubMed Central  PubMed  Google Scholar 

  • Verstynen T, Sabes PN (2011) How each movement changes the next: an experimental and theoretical study of fast adaptive priors in reaching. J Neurosci 31:10050–10059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolpert DM, Diedrichsen J, Flanagan JR (2011) Principles of sensorimotor learning. Nat Rev Neurosci 12:739–751

    CAS  PubMed  Google Scholar 

  • Wu W, Hatsopoulos N (2006) Evidence against a single coordinate system representation in the motor cortex. Exp Brain Res 175:197–210

    Article  PubMed  Google Scholar 

  • Yokoi A, Hirashima M, Nozaki D (2011) Gain field encoding of the kinematics of both arms in the internal model enables flexible bimanual action. J Neurosci 31:17058–17068

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Sejnowski TJ (1999) A theory of geometric constraints on neural activity for natural three-dimensional movement. J Neurosci 19:3122–3145

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J. Kalaska and P. Cisek for comments on the manuscript and R. Shadmehr for helpful discussions. This work was supported by operating grants from the Canadian Institutes for Health Research (MOP 84454) and the National Institutes of Health Research (R01 NS046033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea M. Green.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Green, A.M., Labelle, JP. The influence of proprioceptive state on learning control of reach dynamics. Exp Brain Res 233, 2961–2975 (2015). https://doi.org/10.1007/s00221-015-4366-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4366-x

Keywords

Navigation