Skip to main content
Log in

Integrated approach for studying adaptation mechanisms in the human somatosensory cortical network

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Magnetoencephalography and independent component analysis (ICA) was utilized to study and characterize neural adaptation in the somatosensory cortical network. Repetitive punctate tactile stimuli were applied unilaterally to the dominant hand and face using a custom-built pneumatic stimulator called the TAC-Cell. ICA-based source estimation from the evoked neuromagnetic responses indicated cortical activity in the contralateral primary somatosensory cortex (SI) for face stimulation, while hand stimulation resulted in robust contralateral SI and posterior parietal cortex (PPC) activation. Activity was also observed in the secondary somatosensory cortical area (SII) with reduced amplitude and higher variability across subjects. There was a significant difference in adaptation rate between SI and higher-order somatosensory cortices for hand stimulation. Adaptation was significantly dependent on stimulus frequency and pulse index within the stimulus train for both hand and face stimulation. The peak latency of the activity was significantly dependent on stimulation site (hand vs. face) and cortical area (SI vs. PPC). The difference in the peak latency of activity in SI and PPC is presumed to reflect a hierarchical serial-processing mechanism in the somatosensory cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275(5297):220–224

    Article  PubMed  CAS  Google Scholar 

  • Alonso AA, Koutlas IG, Leuthold AC, Lewis SM, Georgopoulos AP (2010) Cortical processing of facial tactile stimuli in temporomandibular disorder as revealed by magnetoencephalography. Exp Brain Res 204(1):33–45

    Article  PubMed  Google Scholar 

  • Arezzo JC, Vaughan HG Jr, Legatt AD (1981) Topography and intracranial sources of somatosensory evoked potentials in the monkey II. Cortical components. Electroencephalogr Clin Neurophysiol 51(1):1–18

    Article  PubMed  CAS  Google Scholar 

  • Bardouille T, Ross B (2008) MEG imaging of sensorimotor areas using inter-trial coherence in vibrotactile steady-state responses. Neuroimage 42(1):323–331

    Article  PubMed  CAS  Google Scholar 

  • Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund H (1999) A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci 11(9):3276–3286

    Article  PubMed  CAS  Google Scholar 

  • Bodegard A, Geyer S, Grefkes C, Zilles K, Roland PE (2001) Hierarchical processing of tactile shape in the human brain. Neuron 31(2):317–328

    Article  PubMed  CAS  Google Scholar 

  • Brenner N, Bialek W, de Ruyter van Steveninck R (2000) Adaptive rescaling maximizes information transmission. Neuron 26(3):695–702

    Article  PubMed  CAS  Google Scholar 

  • Burton H, Snyder AZ, Conturo TE, Akbudak E, Ollinger JM, Raichle ME (2002) Adaptive changes in early and late blind: a fMRI study of Braille reading. J Neurophysiol 87(1):589–607

    PubMed  CAS  PubMed Central  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    Article  PubMed  Google Scholar 

  • Disbrow E, Roberts T, Krubitzer L (2000) Somatotopic organization of cortical fields in the lateral sulcus of Homo sapiens: evidence for SII and PV. J Comp Neurol 418(1):1–21

    Article  PubMed  CAS  Google Scholar 

  • Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR (2001) Efficiency and ambiguity in an adaptive neural code. Nature 412(6849):787–792

    Article  PubMed  CAS  Google Scholar 

  • Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308(5722):662–667

    Article  PubMed  CAS  Google Scholar 

  • Forss N, Jousmaki V (1998) Sensorimotor integration in human primary and secondary somatosensory cortices. Brain Res 781(1-2):259–267

    Article  PubMed  CAS  Google Scholar 

  • Forss N, Hari R, Salmelin R, Ahonen A, Hamalainen M, Kajola M, Knuutila J, Simola J (1994) Activation of the human posterior parietal cortex by median nerve stimulation. Exp Brain Res 99(2):309–315

    Article  PubMed  CAS  Google Scholar 

  • Gobbele R, Schurmann M, Forss N, Juottonen K, Buchner H, Hari R (2003) Activation of the human posterior parietal and temporoparietal cortices during audiotactile interaction. Neuroimage 20(1):503–511

    Article  PubMed  CAS  Google Scholar 

  • Hellweg FC, Schultz W, Creutzfeldt OD (1977) Extracellular and intracellular recordings from cat’s cortical whisker projection area: thalamocortical response transformation. J Neurophysiol 40(3):463–479

    PubMed  CAS  Google Scholar 

  • Hinkley LB, Krubitzer LA, Padberg J, Disbrow EA (2009) Visual-manual exploration and posterior parietal cortex in humans. J Neurophysiol 102(6):3433–3446

    Article  PubMed  PubMed Central  Google Scholar 

  • Hironaga N, Ioannides AA (2007) Localization of individual area neuronal activity. Neuroimage 34(4):1519–1534

    Article  PubMed  CAS  Google Scholar 

  • Hoshiyama M, Kakigi R, Koyama S, Watanabe S, Shimojo M (1997) Activity in posterior parietal cortex following somatosensory stimulation in man: magnetoencephalographic study using spatio-temporal source analysis. Brain Topogr 10(1):23–30

    Article  PubMed  CAS  Google Scholar 

  • Hsiao S (2008) Central mechanisms of tactile shape perception. Curr Opin Neurobiol 18(4):418–424

    Article  PubMed  CAS  Google Scholar 

  • Huttunen J, Wikstrom H, Korvenoja A, Seppalainen AM, Aronen H, Ilmoniemi RJ (1996) Significance of the second somatosensory cortex in sensorimotor integration: enhancement of sensory responses during finger movements. Neuroreport 7(5):1009–1012

    Article  PubMed  CAS  Google Scholar 

  • Hyvarinen J (1982) Posterior parietal lobe of the primate brain. Physiol Rev 62(3):1060–1129

    PubMed  CAS  Google Scholar 

  • Jones EG, Powell TP (1969a) Connexions of the somatic sensory cortex of the rhesus monkey I. Ipsilateral cortical connexions. Brain 92(3):477–502

    Article  PubMed  CAS  Google Scholar 

  • Jones EG, Powell TP (1969b) Connexions of the somatic sensory cortex of the rhesus monkey II. Contralateral cortical connexions. Brain 92(4):717–730

    Article  PubMed  CAS  Google Scholar 

  • Jones EG, Powell TP (1970a) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93(4):793–820

    Article  PubMed  CAS  Google Scholar 

  • Jones EG, Powell TP (1970b) Connexions of the somatic sensory cortex of the rhesus monkey. 3. Thalamic connexions. Brain 93(1):37–56

    Article  PubMed  CAS  Google Scholar 

  • Lederman SJ, Klatzky RL (1987) Hand movements: a window into haptic object recognition. Cogn Psychol 19(3):342–368

    Article  PubMed  CAS  Google Scholar 

  • Manzoni T, Conti F, Fabri M (1986) Callosal projections from area SII to SI in monkeys: anatomical organization and comparison with association projections. J Comp Neurol 252(2):245–263

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38(4):871–908

    PubMed  CAS  Google Scholar 

  • Muller JR, Metha AB, Krauskopf J, Lennie P (1999) Rapid adaptation in visual cortex to the structure of images. Science 285(5432):1405–1408

    Article  PubMed  CAS  Google Scholar 

  • Ohzawa I, Sclar G, Freeman RD (1982) Contrast gain control in the cat visual cortex. Nature 298(5871):266–268

    Article  PubMed  CAS  Google Scholar 

  • Padberg J, Cerkevich C, Engle J, Rajan AT, Recanzone G, Kaas J, Krubitzer L (2009) Thalamocortical connections of parietal somatosensory cortical fields in macaque monkeys are highly divergent and convergent. Cereb Cortex 19(9):2038–2064

    Article  Google Scholar 

  • Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12

    PubMed  Google Scholar 

  • Popescu M, Barlow S, Popescu EA, Estep ME, Venkatesan L, Auer ET, Brooks WM (2010) Cutaneous stimulation of the digits and lips evokes responses with different adaptation patterns in primary somatosensory cortex. Neuroimage 52(4):1477–1486

    Article  PubMed  PubMed Central  Google Scholar 

  • Popescu EA, Barlow SM, Venkatesan L, Wang J, Popescu M (2013) Adaptive changes in the neuromagnetic response of the primary and association somatosensory areas following repetitive tactile hand stimulation in humans. Hum Brain Mapp 34(6):1415–1426

    Article  PubMed  Google Scholar 

  • Rausell E, Bickford L, Manger PR, Woods TM, Jones EG (1998) Extensive divergence and convergence in the thalamocortical projection to monkey somatosensory cortex. J Neurosci 18(11):4216–4232

    PubMed  CAS  Google Scholar 

  • Ridley RM, Ettlinger G (1976) Impaired tactile learning and retention after removals of the second somatic sensory projection cortex (SII) in the monkey. Brain Res 109(3):656–660

    Article  PubMed  CAS  Google Scholar 

  • Sack AT (2009) Parietal cortex and spatial cognition. Behav Brain Res 202(2):153–161

    Article  PubMed  Google Scholar 

  • Staines WR, Black SE, Graham SJ, McIlroy WE (2002) Somatosensory gating and recovery from stroke involving the thalamus. Stroke 33(11):2642–2651

    Article  PubMed  Google Scholar 

  • Venkatesan L, Barlow S, Popescu M, Popescu A, Auer ET (2010) TAC-Cell inputs to human hand and lip induce short-term adaptation of the primary somatosensory cortex. Brain Res 1348:63–70

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vigario R, Sarela J, Jousmaki V, Hamalainen M, Oja E (2000) Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans Biomed Eng 47(5):589–593

    Article  PubMed  CAS  Google Scholar 

  • Willis WDJ, Coggeshall RE (1991) Sensory mechanisms of the spinal cord. Plenum, New York

    Book  Google Scholar 

  • Wilson DA (1998) Synaptic correlates of odor habituation in the rat anterior piriform cortex. J Neurophysiol 80(2):998–1001

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants NIH R01 DC003311 (SM Barlow), the Sutherland Foundation, and the Hoglund Brain Imaging Center (supported by a generous gift from Forrest and Sally Hoglund).

Conflict of interest

Drs. Barlow and Venkatesan are the inventors of the TAC-Cell, which is registered and licensed by the University of Kansas to Epic Medical Concepts and Innovations, Incorporated (Olathe, KS, USA). There are no additional conflicts of interest with any of the commercial manufacturers listed in this research paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit Venkatesan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesan, L., Barlow, S.M., Popescu, M. et al. Integrated approach for studying adaptation mechanisms in the human somatosensory cortical network. Exp Brain Res 232, 3545–3554 (2014). https://doi.org/10.1007/s00221-014-4043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4043-5

Keywords

Navigation