Skip to main content

Advertisement

Log in

Adapting to inversion of the visual field: a new twist on an old problem

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

While sensorimotor adaptation to prisms that displace the visual field takes minutes, adapting to an inversion of the visual field takes weeks. In spite of a long history of the study, the basis of this profound difference remains poorly understood. Here, we describe the computational issue that underpins this phenomenon and presents experiments designed to explore the mechanisms involved. We show that displacements can be mastered without altering the updated rule used to adjust the motor commands. In contrast, inversions flip the sign of crucial variables called sensitivity derivatives—variables that capture how changes in motor commands affect task error and therefore require an update of the feedback learning rule itself. Models of sensorimotor learning that assume internal estimates of these variables are known and fixed predicted that when the sign of a sensitivity derivative is flipped, adaptations should become increasingly counterproductive. In contrast, models that relearn these derivatives predict that performance should initially worsen, but then improve smoothly and remain stable once the estimate of the new sensitivity derivative has been corrected. Here, we evaluated these predictions by looking at human performance on a set of pointing tasks with vision perturbed by displacing and inverting prisms. Our experimental data corroborate the classic observation that subjects reduce their motor errors under inverted vision. Subjects’ accuracy initially worsened and then improved. However, improvement was jagged rather than smooth and performance remained unstable even after 8 days of continually inverted vision, suggesting that subjects improve via an unknown mechanism, perhaps a combination of cognitive and implicit strategies. These results offer a new perspective on classic work with inverted vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelghani MN, Tweed DB (2010) Learning course adjustments during arm movements with reversed sensitivity derivatives. BMC Neurosci 11:150

    Article  PubMed  Google Scholar 

  • Abdelghani MN, Lillicrap TP, Tweed DB (2008) Sensitivity derivatives for flexible sensorimotor learning. Neural Comput 20(8):2085–2111

    Article  PubMed  CAS  Google Scholar 

  • Anguera JA, Reuter-Lorenz PA, Willingham DT, Seidler RD (2010) Contributions of spatial working memory to visuomotor learning. J Cogn Neurosci 22(9):1917–1930

    Article  PubMed  Google Scholar 

  • Åström KJ, Wittenmark B (1995) Adaptive control, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  • Block HJ, Bastian AJ (2012) Cerebellar involvement in motor but not sensory adaptation. Neuropsychologia 50:1766–1775

    Article  PubMed  Google Scholar 

  • Braun DA, Aertsen A, Wolpert DM, Mehring C (2009) Motor task variation induces structural learning. Curr Biol 19(4):352–357

    Article  PubMed  CAS  Google Scholar 

  • Brinkman C, Porter R, Norman J (1983) Plasticity of motor behavior in monkeys with crossed forelimb nerves. Science 220(4595):438–440

    Article  PubMed  CAS  Google Scholar 

  • Brooks V, Hilperath F, Brooks M, Ross HG, Freund HJ (1995) Learning “what” and “how” in a human motor task. Learn Mem 2(5):225–242

    Article  PubMed  CAS  Google Scholar 

  • Callier FM, Desoer CA (1991) Linear system theory. Springer texts in electrical engineering. Springer-Verlag, New York

    Book  Google Scholar 

  • Cresswell AB, Macmillan AI, Hanna GB, Cuschieri A (1999) Methods for improving performance under reverse alignment conditions during endoscopic surgery. Surg Endosc 13(6):591–594

    Article  PubMed  CAS  Google Scholar 

  • Cunningham HA (1989) Aiming error under transformed spatial mappings suggests a structure for visual-motor maps. J Exp Psychol 15(3):493–506

    CAS  Google Scholar 

  • Dean P, Porrill J, Stone JV (2002) Decorrelation control by the cerebellum achieves oculomotor plant compensation in simulated vestibulo-ocular reflex. Proc R Soc Lond B 269:1895–1904

    Google Scholar 

  • Fernandez-Ruiz J, Diaz R, Moreno-Briseno P, Campos-Romo A, Ojeda R (2006) Rapid topographical plasticity of the visuomotor spatial transformation. J Neurosci 26(7):1986–1990

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Ruiz J, Wong W, Armstrong IT, Flanagan JR (2011) Relation between reaction time and reach errors during visuomotor adaptation. Behav Brain Res 219(1):8–14

    Article  PubMed  Google Scholar 

  • Gritsenko V, Kalaska JF (2010) Rapid online correction is selectively suppressed during movement with a visuomotor transformation. J Neurophysiol 104:3084–3104

    Article  PubMed  CAS  Google Scholar 

  • Harris CS (1965) Perceptual adaptation to inverted, reversed, and displaced vision. Psychol Rev 72(6):419–444

    Article  PubMed  CAS  Google Scholar 

  • Illert M, Trauner M, Weller E, Wiedemann E (1986) Forearm muscles of man can reverse their function after tendon transfers: an electromyographic study. Neurosci Lett 67(2):129–134

    Article  PubMed  CAS  Google Scholar 

  • Jordan MI, Rumelhart DE (1992) Forward models: supervised learning with a distal teacher. Cogn Sci 16(3):307–354

    Article  Google Scholar 

  • Kawato M, Gomi H (1992) The cerebellum and VOR/OKR learning models. Trends Neurosci 15(11):445–453

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa S, Kimura T, Uka T (1997) Prism adaptation of reaching movements: specificity for the velocity of reaching. J Neurosci 17(4):1481–1492

    PubMed  CAS  Google Scholar 

  • Kohler I (1963) The formation and transformation of the perceptual world. Psychological Issues, vol 3, No. 4, Monograph 12, International Universities Press, New York, pp 1–173

  • Kornheiser AS (1976) Adaptation to laterally displaced vision: a review. Psychol Bull 83(5):783–816

    Article  PubMed  CAS  Google Scholar 

  • Linden DE, Kallenbach U, Heinecke A, Singer W, Goebel R (1999) The myth of upright vision. A psychophysical and functional imaging study of adaptation to inverting spectacles. Perception 28(4):469–481

    Article  PubMed  CAS  Google Scholar 

  • Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain 119(4):1199–1211

    Article  PubMed  Google Scholar 

  • Mazzoni P, Krakauer JW (2006) An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci 26(14):3642–3645

    Article  PubMed  CAS  Google Scholar 

  • Mehta B, Schaal S (2002) Forward models in visuomotor control. J Neurophysiol 88(2):942–953

    PubMed  Google Scholar 

  • Moody J, Darken CJ (1989) Fast learning in networks of locally-tuned processing units. Neural Comput 1(2):281–294

    Article  Google Scholar 

  • Porrill J, Dean P, Stone JV (2004) Recurrent cerebellar architecture solves the motor-error problem. Proc Biol Sci R Soc Lond B 271(1541):789–796

    Article  Google Scholar 

  • Pouget A, Snyder LH (2000) Computational approaches to sensorimotor transformations. Nat Neurosci 3:1192–1198

    Article  PubMed  CAS  Google Scholar 

  • Redding GM, Wallace B (1990) Effects on prism adaptation of duration and timing of visual feedback during pointing. J Mot Behav 22(2):209–224

    PubMed  CAS  Google Scholar 

  • Redding GM, Rossetti Y, Wallace B (2005) Applications of prism adaptation: a tutorial in theory and method. Neurosci Biobehav R 29(3):431–444

    Article  Google Scholar 

  • Rock I (1966) The nature of perceptual adaptation. Basic Books, New York

    Google Scholar 

  • Rock I (1973) Orientation and form. Academic Press, New York

    Google Scholar 

  • Rolls ET, Deco G (2002) Computational neuroscience of vision. Oxford University Press, Oxford

    Google Scholar 

  • Sailer U, Flanagan JR, Johansson RS (2005) Eye-hand coordination during learning of a novel visuomotor task. J Neurosci 25(39):8833–8842

    Article  PubMed  CAS  Google Scholar 

  • Seidler RD, Bo J, Anguera JA (2012) Neurocognitive contributions to motor skill learning: the role of working memory. J Mot Behav 44(6):445–453

    Article  PubMed  Google Scholar 

  • Sekiyama K, Miyauchi S, Imaruoka T, Egusa H, Tashiro T (2000) Body image as a visuomotor transformation device revealed in adaptation to reversed vision. Nature 407(6802):374–376

    Article  PubMed  CAS  Google Scholar 

  • Singer W, Tretter F, Yinon U (1982) Central gating of developmental plasticity in kitten visual cortex. J Physiol 324:221–237

    PubMed  CAS  Google Scholar 

  • Sperry RW (1941) The effect of crossing nerves to antagonistic muscles in the hind limb of the rat. J Comp Neurol 75(1):1–19

    Article  Google Scholar 

  • Sperry RW (1943a) Effect of 180 degree rotation of the retinal field on visuomotor coordination. J Exp Zool 92(3):263–279

    Article  Google Scholar 

  • Sperry RW (1943b) Functional results of crossing sensory nerves in the rat. J Comp Neurol 78(1):59–90

    Article  Google Scholar 

  • Sperry RW (1947) Effect of crossing nerves to antagonistic limb muscles in the monkey. Arch Neurol Psychiatry 58(4):452–473

    Article  PubMed  CAS  Google Scholar 

  • Stratton GM (1896) Some preliminary experiments on vision without inversion of the retinal image. Psychol Rev 3(6):611

    Article  Google Scholar 

  • Stratton GM (1897) Vision without inversion of the retinal image. Psychol Rev 4(4):341

    Article  Google Scholar 

  • Sugita Y (1996) Global plasticity in adult visual cortex following reversal of visual input. Nature 380(6574):523–526

    Article  PubMed  CAS  Google Scholar 

  • Taylor JA, Ivry RB (2011) Flexible cognitive strategies during motor learning. PLoS Comput Biol 7(3):e1001096

    Article  PubMed  CAS  Google Scholar 

  • Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. Nature 407(6805):742–747

    Article  PubMed  CAS  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5(11):1226–1235

    Article  PubMed  CAS  Google Scholar 

  • Welch RB, Choe CS, Heinrich DR (1974) Evidence for a three-component model of prism adaptation. J Exp Psychol 103(4):700–705

    Google Scholar 

  • Werner S, Bock O (2010) Mechanisms for visuomotor adaptation to left–right reversed vision. Hum Mov Sci 29:172–178

    Article  PubMed  Google Scholar 

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11(7–8):1317–1329

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Miall RC (1996) Forward models for physiological motor control. Neural Netw 9(8):1265–1279

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mohamed N. Abdelghani for conversations relating to the theoretical aspects of this paper. T.P.L. was supported by an Ontario Graduate Scholarship and by the Sun Microsystems of Canada Scholarship in Computational Sciences and Engineering. J.F-R. was supported by UNAM grant PAPIIT IN202810 and CONACYT grant 102314. P.M-B. was supported by a CONACyT award. D.B.T. was supported by CIHR. N.F.T. was supported by NSERC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Timothy P. Lillicrap or Juan Fernandez-Ruiz.

Additional information

Timothy P. Lillicrap and Pablo Moreno-Briseño contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 412 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lillicrap, T.P., Moreno-Briseño, P., Diaz, R. et al. Adapting to inversion of the visual field: a new twist on an old problem. Exp Brain Res 228, 327–339 (2013). https://doi.org/10.1007/s00221-013-3565-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3565-6

Keywords

Navigation