Skip to main content
Log in

Specialization of reach function in human posterior parietal cortex

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Posterior parietal cortex (PPC) plays an important role in the planning and control of goal-directed action. Single-unit studies in monkeys have identified reach-specific areas in the PPC, but the degree of effector and computational specificity for reach in the corresponding human regions is still under debate. Here, we review converging evidence spanning functional neuroimaging, parietal patient and transcranial magnetic stimulation studies in humans that suggests a functional topography for reach within human PPC. We contrast reach to saccade and grasp regions to distinguish functional specificity and also to understand how these different goal-directed actions might be coordinated at the cortical level. First, we present the current evidence for reach specificity in distinct modules in PPC, namely superior parietal occipital cortex, midposterior intraparietal cortex and angular gyrus, compared to saccade and grasp. Second, we review the evidence for hemispheric lateralization (both for hand and visual hemifield) in these reach representations. Third, we review evidence for computational reach specificity in these regions and finally propose a functional framework for these human PPC reach modules that includes (1) a distinction between the encoding of reach goals in posterior–medial PPC as opposed to reach movement vectors in more anterior–lateral PPC regions, and (2) their integration within a broader cortical framework for reach, grasp and eye–hand coordination. These findings represent both a confirmation and extension of findings that were previously reported for the monkey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen RA (1997) Multimodal integration for the representation of space in the posterior parietal cortex. Philos Trans R Soc Lond B, Biol Sci 352:1421–1428

    Article  CAS  Google Scholar 

  • Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cortex. Annu Rev Neurosci 25:189–220

    Article  PubMed  CAS  Google Scholar 

  • Andersen RA, Cui H (2009) Intention, action planning, and decision making in parietal-frontal circuits. Neuron 63:568–583

    Article  PubMed  CAS  Google Scholar 

  • Andersen RA, Brotchie PR, Mazzoni P (1992) Evidence for the lateral intraparietal area as the parietal eye field. Curr Opin Neurobiol 2:840–846

    Article  PubMed  CAS  Google Scholar 

  • Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, van Essen DC, Corbetta M (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J Neurosci 23:4689–4699

    PubMed  CAS  Google Scholar 

  • Averbeck BB, Battaglia-Mayer A, Guglielmo C, Caminiti R (2009) Statistical analysis of parieto-frontal cognitive-motor networks. J Neurophysiol 102:1911–1920

    Article  PubMed  Google Scholar 

  • Bartels A, Logothetis NK, Moutoussis K (2008) fMRI and its interpretations: an illustration on directional selectivity in area V5/MT. Trends Neurosci 31:444–453

    Article  PubMed  CAS  Google Scholar 

  • Batista AP, Buneo CA, Snyder LH, Andersen RA (1999) Reach plans in eye-centered coordinates. Science 285:257–260

    Article  PubMed  CAS  Google Scholar 

  • Battaglia-Mayer A, Ferraina S, Mitsuda T, Marconi B, Genovesio A, Onorati P, Lacquaniti F, Caminiti R (2000) Early coding of reaching in the parietooccipital cortex. J Neurophysiol 83:2374–2391

    PubMed  CAS  Google Scholar 

  • Battaglia-Mayer A, Ferraina S, Genovesio A, Marconi B, Squatrito S, Molinari M, Lacquaniti F, Caminiti R (2001) Eye-hand coordination during reaching. II. An analysis of the relationships between visuomanual signals in parietal cortex and parieto-frontal association projections. Cereb Cortex 11:528–544

    Article  PubMed  CAS  Google Scholar 

  • Baumann MA, Fluet MC, Scherberger H (2009) Context-specific grasp movement representation in the macaque anterior intraparietal area. J Neurosci 29:6436–6448

    Article  PubMed  CAS  Google Scholar 

  • Bernier P-M, Grafton ST (2010) Human posterior parietal cortex flexibly determines reference frames for reaching based on sensory context. Neuron 68:776–788

    Article  PubMed  CAS  Google Scholar 

  • Beurze SM, de Lange FP, Toni I, Medendorp WP (2007) Integration of target and effector information in the human brain during reach planning. J Neurophysiol 97:188–199

    Article  PubMed  CAS  Google Scholar 

  • Beurze SM, de Lange FP, Toni I, Medendorp WP (2009) Spatial and effector processing in the human parietofrontal network for reaches and saccades. J Neurophysiol 101:3053–3062

    Article  PubMed  CAS  Google Scholar 

  • Binkofski F, Dohle C, Posse S, Stephan KM, Hefter H, Seitz RJ, Freund HJ (1998) Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study. Neurology 50:1253–1259

    Article  PubMed  CAS  Google Scholar 

  • Bisley JW, Goldberg ME (2010) Attention, intention, and priority in the parietal lobe. Annu Rev Neurosci 33:1–21

    Article  PubMed  CAS  Google Scholar 

  • Blangero A, Ota H, Delporte L, Revol P, Vindras P, Rode G, Boisson D, Vighetto A, Rossetti Y, Pisella L (2007) Optic ataxia is not only ‘optic’: impaired spatial integration of proprioceptive information. NeuroImage 36(Suppl 2):T61–T68

    Article  PubMed  Google Scholar 

  • Blangero A, Gaveau V, Luauté J, Rode G, Salemme R, Guinard M, Boisson D, Rossetti Y, Pisella L (2008) A hand and a field effect in on-line motor control in unilateral optic ataxia. Cortex 44:560–568

    Article  PubMed  Google Scholar 

  • Blangero A, Menz MM, McNamara A, Binkofski F (2009) Parietal modules for reaching. Neuropsychologia 47:1500–1507

    Article  PubMed  CAS  Google Scholar 

  • Blangero A, Ota H, Rossetti Y, Fujii T, Ohtake H, Tabuchi M, Vighetto A, Yamadori A, Vindras P, Pisella L (2010) Systematic retinotopic reaching error vectors in unilateral optic ataxia. Cortex 46:77–93

    Article  PubMed  Google Scholar 

  • Blatt GJ, Andersen RA, Stoner GR (1990) Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J Comp Neurol 299:421–445

    Article  PubMed  CAS  Google Scholar 

  • Blohm G, Crawford JD (2007) Computations for geometrically accurate visually guided reaching in 3-D space. J Vis 7:4.1–22

    Google Scholar 

  • Blohm G, Keith GP, Crawford JD (2009) Decoding the cortical transformations for visually guided reaching in 3D space. Cereb Cortex 19:1372–1393

    Article  PubMed  Google Scholar 

  • Bock O (1986) Contribution of retinal versus extraretinal signals towards visual localization in goal-directed movements. Exp Brain Res 64:476–482

    Article  PubMed  CAS  Google Scholar 

  • Borra E, Belmalih A, Calzavara R, Gerbella M, Murata A, Rozzi S, Luppino G (2008) Cortical connections of the macaque anterior intraparietal (AIP) area. Cereb Cortex 18:1094–1111

    Article  PubMed  Google Scholar 

  • Buneo CA, Andersen RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44:2594–2606

    Article  PubMed  Google Scholar 

  • Buneo CA, Jarvis MR, Batista AP, Andersen RA (2002) Direct visuomotor transformations for reaching. Nature 416:632–636

    Article  PubMed  CAS  Google Scholar 

  • Busan P, Monti F, Semenic M, Pizzolato G, Battaglini PP (2009a) Parieto-occipital cortex and planning of reaching movements: a transcranial magnetic stimulation study. Behav Brain Res 201:112–119

    Article  PubMed  Google Scholar 

  • Busan P, Barbera C, Semenic M, Monti F, Pizzolato G, Pelamatti G, Battaglini PP (2009b) Effect of transcranial magnetic stimulation (TMS) on parietal and premotor cortex during planning of reaching movements. PLoS One 4:e4621

    Article  PubMed  CAS  Google Scholar 

  • Calton JL, Dickinson AR, Snyder LH (2002) Non-spatial, motor-specific activation in posterior parietal cortex. Nat Neurosci 5:580–588

    Article  PubMed  CAS  Google Scholar 

  • Caminiti R, Ferraina S, Mayer AB (1998) Visuomotor transformations: early cortical mechanisms of reaching. Curr Opin Neurobiol 8:753–761

    Article  PubMed  CAS  Google Scholar 

  • Caminiti R, Chafee MV, Battaglia-Mayer A, Averbeck BB, Crowe DA, Georgopoulos AP (2010) Understanding the parietal lobe syndrome from a neurophysiological and evolutionary perspective. Eur J Neurosci 31:2320–2340

    Article  PubMed  Google Scholar 

  • Carey DP, Coleman RJ, della Sala S (1997) Magnetic misreaching. Cortex 33:639–652

    Article  PubMed  CAS  Google Scholar 

  • Castiello U (2005) The neuroscience of grasping. Nat Rev Neurosci 6:726–736

    Article  PubMed  CAS  Google Scholar 

  • Castiello U, Begliomini C (2008) The cortical control of visually guided grasping. Neuroscientist 14:157–170

    Article  PubMed  Google Scholar 

  • Cavina-Pratesi C, Ietswaart M, Humphreys GW, Lestou V, Milner AD (2010a) Impaired grasping in a patient with optic ataxia: primary visuomotor deficit or secondary consequence of misreaching? Neuropsychologia 48:226–234

    Article  PubMed  Google Scholar 

  • Cavina-Pratesi C, Monaco S, Fattori P, Galletti C, McAdam TD, Quinlan DJ, Goodale MA, Culham JC (2010b) Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humans. J Neurosci 30:10306–10323

    Article  PubMed  CAS  Google Scholar 

  • Chang E, Ro T (2007) Maintenance of visual stability in the human posterior parietal cortex. J Cogn Neurosci 19:266–274

    Article  PubMed  Google Scholar 

  • Chang SW, Snyder LH (2010) Idiosyncratic and systematic aspects of spatial representations in the macaque parietal cortex. Proc Natl Acad Sci USA 107:7951–7956

    Article  PubMed  CAS  Google Scholar 

  • Chang SWC, Dickinson AR, Snyder LH (2008) Limb-specific representation for reaching in the posterior parietal cortex. J Neurosci 28:6128–6140

    Article  PubMed  CAS  Google Scholar 

  • Chang SW, Papadimitriou C, Snyder LH (2009) Using a compound gain field to compute a reach plan. Neuron 64:744–755

    Article  PubMed  CAS  Google Scholar 

  • Chouinard PA, Paus T (2010) What have we learned from perturbing the human cortical motor system with transcranial magnetic stimulation? Front Hum Neurosci 4:173

    Article  PubMed  Google Scholar 

  • Cisek P, Kalaska JF (2010) Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci 33:269–298

    Article  PubMed  CAS  Google Scholar 

  • Clavagnier S, Prado J, Kennedy H, Perenin M-T (2007) How humans reach: distinct cortical systems for central and peripheral vision. Neuroscientist 13:22–27

    Article  PubMed  Google Scholar 

  • Cohen NR, Cross ES, Tunik E, Grafton ST, Culham JC (2009) Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: a TMS approach. Neuropsychologia 47:1553–1562

    Article  PubMed  Google Scholar 

  • Colby CL, Duhamel JR (1991) Heterogeneity of extrastriate visual areas and multiple parietal areas in the macaque monkey. Neuropsychologia 29:517–537

    Article  PubMed  CAS  Google Scholar 

  • Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Annu Rev Neurosci 22:319–349

    Article  PubMed  CAS  Google Scholar 

  • Colby CL, Duhamel JR, Goldberg ME (1996) Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J Neurophysiol 76:2841–2852

    PubMed  CAS  Google Scholar 

  • Connolly JD, Andersen RA, Goodale MA (2003) FMRI evidence for a ‘parietal reach region’ in the human brain. Exp Brain Res 153:140–145

    Article  PubMed  Google Scholar 

  • Connolly JD, Goodale MA, Cant JS, Munoz DP (2007) Effector-specific fields for motor preparation in the human frontal cortex. Neuroimage 34:1209–1219

    Article  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2010) Spatial neglect and attention networks. Annu Rev Neurosci 34:569–599 110301101035033

    Article  Google Scholar 

  • Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, van Essen DC, Shulman GL (1998) A common network of functional areas for attention and eye movements. Neuron 21:761–773

    Article  PubMed  CAS  Google Scholar 

  • Coulthard E, Parton A, Husain M (2006) Action control in visual neglect. Neuropsychologia 44:2717–2733

    Article  PubMed  Google Scholar 

  • Crawford JD, Medendorp WP, Marotta JJ (2004) Spatial transformations for eye-hand coordination. J Neurophysiol 92:10–19

    Article  PubMed  CAS  Google Scholar 

  • Crawford JD, Henriques DYP, Medendorp WP (2011) Three-dimensional transformations for goal-directed action. Annu Rev Neurosci 34:309–331

    Article  PubMed  CAS  Google Scholar 

  • Critchley M (1953) The parietal lobes. Hafner Press, New York

    Google Scholar 

  • Culham JC, Kanwisher NG (2001) Neuroimaging of cognitive functions in human parietal cortex. Curr Opin Neurobiol 11:157–163

    Article  PubMed  CAS  Google Scholar 

  • Culham JC, Valyear KF (2006) Human parietal cortex in action. Curr Opin Neurobiol 16:205–212

    Article  PubMed  CAS  Google Scholar 

  • Culham JC, Danckert SL, DeSouza JFX, Gati JS, Menon RS, Goodale MA (2003) Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp Brain Res 153:180–189

    Article  PubMed  Google Scholar 

  • Culham JC, Cavina-Pratesi C, Singhal A (2006) The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? Neuropsychologia 44:2668–2684

    Article  PubMed  Google Scholar 

  • Culham J, Gallivan J, Cavina-Pratesi C, Quinlan D (2008) fMRI investigations of reaching and ego space in human superior parieto-occipital cortex. In: Klatzky R, Behrmann M & Kingstone A (eds) Embodiment, ego-space and action, New York, Psychology Press, pp 247–274

  • Davare M, Andres M, Cosnard G, Thonnard J-L, Olivier E (2006) Dissociating the role of ventral and dorsal premotor cortex in precision grasping. J Neurosci 26:2260–2268

    Article  PubMed  Google Scholar 

  • Davare M, Andres M, Clerget E, Thonnard J-L, Olivier E (2007) Temporal dissociation between hand shaping and grip force scaling in the anterior intraparietal area. J Neurosci 27:3974–3980

    Article  PubMed  CAS  Google Scholar 

  • Davare M, Kraskov A, Rothwell JC, Lemon RN (2011a) Interactions between areas of the cortical grasping network. Curr Opin Neurobiol 21:565–570

    Article  PubMed  CAS  Google Scholar 

  • Davare M, Zenon A, Pourtois G, Desmurget M, Olivier E (2012) Role of the medial part of the intraparietal sulcus in implementing movement direction. Cerebral Cortex 22(6):1382–1394

    Google Scholar 

  • Della-Maggiore V, Malfait N, Ostry DJ, Paus T (2004) Stimulation of the posterior parietal cortex interferes with arm trajectory adjustments during the learning of new dynamics. J Neurosci 24:9971–9976

    Article  PubMed  CAS  Google Scholar 

  • Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4:423–431

    Article  PubMed  Google Scholar 

  • Desmurget M, Sirigu A (2009) A parietal-premotor network for movement intention and motor awareness. Trends Cogn Sci 13:411–419

    Article  PubMed  Google Scholar 

  • Desmurget M, Epstein CM, Turner RS, Prablanc C, Alexander GE, Grafton ST (1999) Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat Neurosci 2:563–567

    Article  PubMed  CAS  Google Scholar 

  • DeSouza JF, Dukelow SP, Gati JS, Menon RS, Andersen RA, Vilis T (2000) Eye position signal modulates a human parietal pointing region during memory-guided movements. J Neurosci 20:5835–5840

    PubMed  CAS  Google Scholar 

  • Elkington PT, Kerr GK, Stein JS (1992) The effect of electromagnetic stimulation of the posterior parietal cortex on eye movements. Eye 6(Pt 5):510–514

    Article  PubMed  Google Scholar 

  • Elliott D, Binsted G, Heath M (1999) The control of goal-directed limb movements: correcting errors in the trajectory. Human Mov Sci 18:121–136

    Article  Google Scholar 

  • Eskandar EN, Assad JA (1999) Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance. Nat Neurosci 2:88–93

    Article  PubMed  CAS  Google Scholar 

  • Fattori P, Gamberini M, Kutz DF, Galletti C (2001) ‘Arm-reaching’ neurons in the parietal area V6A of the macaque monkey. Eur J Neurosci 13:2309–2313

    Article  PubMed  CAS  Google Scholar 

  • Fattori P, Pitzalis S, Galletti C (2009a) The cortical visual area V6 in macaque and human brains. J Physiol 103:88–97

    Google Scholar 

  • Fattori P, Breveglieri R, Marzocchi N, Filippini D, Bosco A, Galletti C (2009b) Hand orientation during reach-to-grasp movements modulates neuronal activity in the medial posterior parietal area V6A. J Neurosci 29:1928–1936

    Article  PubMed  Google Scholar 

  • Fattori P, Raos V, Breveglieri R, Bosco A, Marzocchi N, Galletti C (2010) The dorsomedial pathway is not just for reaching: grasping neurons in the medial parieto-occipital cortex of the macaque monkey. J Neurosci 30:342–349

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Ruiz J, Goltz HC, DeSouza JFX, Vilis T, Crawford JD (2007) Human parietal “reach region” primarily encodes intrinsic visual direction, not extrinsic movement direction, in a visual motor dissociation task. Cereb Cortex 17:2283–2292

    Article  PubMed  Google Scholar 

  • Ferraina S, Battaglia-Mayer A, Genovesio A, Marconi B, Onorati P, Caminiti R (2001) Early coding of visuomanual coordination during reaching in parietal area PEc. J Neurophysiol 85:462–467

    PubMed  CAS  Google Scholar 

  • Ferraina S, Brunamonti E, Giusti MA, Costa S, Genovesio A, Caminiti R (2009) Reaching in depth: hand position dominates over binocular eye position in the rostral superior parietal lobule. J Neurosci 29:11461–11470

    Article  PubMed  CAS  Google Scholar 

  • Filimon F (2010) Human cortical control of hand movements: parietofrontal networks for reaching, grasping, and pointing. Neuroscientist 16:388–407

    Article  PubMed  Google Scholar 

  • Filimon F, Huang R-S, Sereno MI (2009) Multiple parietal reach regions in humans: cortical representations for visual and proprioceptive feedback during on-line reaching. J Neurosci 29:2961–2971

    Article  PubMed  CAS  Google Scholar 

  • Fisk JD, Goodale MA (1985) The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space. Exp Brain Res 60:159–178

    Article  PubMed  CAS  Google Scholar 

  • Frey SH, Vinton D, Norlund R, Grafton ST (2005) Cortical topography of human anterior intraparietal cortex active during visually guided grasping. Brain Res Cogn Brain Res 23:397–405

    Article  PubMed  Google Scholar 

  • Gallese V, Murata A, Kaseda M, Niki N, Sakata H (1994) Deficit of hand preshaping after muscimol injection in monkey parietal cortex. NeuroReport 5:1525–1529

    Article  PubMed  CAS  Google Scholar 

  • Galletti C, Battaglini PP (1989) Gaze-dependent visual neurons in area V3A of monkey prestriate cortex. J Neurosci 9:1112–1125

    PubMed  CAS  Google Scholar 

  • Galletti C, Kutz DF, Gamberini M, Breveglieri R, Fattori P (2003) Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp Brain Res 153:158–170

    Article  PubMed  Google Scholar 

  • Gallivan JP, Cavina-Pratesi C, Culham JC (2009) Is that within reach? fMRI reveals that the human superior parieto-occipital cortex encodes objects reachable by the hand. J Neurosci 29:4381–4391

    Article  PubMed  CAS  Google Scholar 

  • Gallivan JP, McLean DA, Smith FW, Culham JC (2011a) Decoding effector-dependent and effector-independent movement intentions from human parieto-frontal brain activity. J Neurosci 31:17149–17168

    Article  PubMed  CAS  Google Scholar 

  • Gallivan JP, McLean DA, Valyear KF, Pettypiece CE, Culham JC (2011b) Decoding action intentions from preparatory brain activity in human parieto-frontal networks. J Neurosci 31:9599–9610

    Article  PubMed  CAS  Google Scholar 

  • Gamberini M, Passarelli L, Fattori P, Zucchelli M, Bakola S, Luppino G, Galletti C (2009) Cortical connections of the visuomotor parietooccipital area V6Ad of the macaque monkey. J Comp Neurol 513:622–642

    Article  PubMed  Google Scholar 

  • Gaveau V, Pélisson D, Blangero A, Urquizar C, Prablanc C, Vighetto A, Pisella L (2008) Saccade control and eye-hand coordination in optic ataxia. Neuropsychologia 46:475–486

    Article  PubMed  Google Scholar 

  • Glover S, Miall RC, Rushworth MFS (2005) Parietal rTMS disrupts the initiation but not the execution of on-line adjustments to a perturbation of object size. J Cogn Neurosci 17:124–136

    Article  PubMed  Google Scholar 

  • Gomi H (2008) Implicit online corrections of reaching movements. Curr Opin Neurobiol 18:558–564

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  PubMed  CAS  Google Scholar 

  • Gorbet DJ, Sergio LE (2009) The behavioural consequences of dissociating the spatial directions of eye and arm movements. Brain Res 1284:77–88

    Article  PubMed  CAS  Google Scholar 

  • Gorbet DJ, Staines WR, Sergio LE (2004) Brain mechanisms for preparing increasingly complex sensory to motor transformations. NeuroImage 23:1100–1111

    Article  PubMed  Google Scholar 

  • Grafton ST (2010) The cognitive neuroscience of prehension: recent developments. Exp Brain Res 204:475–491

    Article  PubMed  Google Scholar 

  • Grafton ST, Arbib MA, Fadiga L, Rizzolatti G (1996) Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Exp Brain Res 112:103–111

    Article  PubMed  CAS  Google Scholar 

  • Granek JA, Blangero A, Pisella L, Rossetti Y, Sergio LE (2009) Patients with optic ataxia cannot decouple eye and hand movements when performing complex visuomotor tasks. In: Society for neuroscience, vol 354. Abstr, Chicago, IL, p 20.Y8

  • Graziano MS, Aflalo TN (2007) Mapping behavioral repertoire onto the cortex. Neuron 56:239–251

    Article  PubMed  CAS  Google Scholar 

  • Graziano MS, Gross CG (1998) Spatial maps for the control of movement. Curr Opin Neurobiol 8:195–201

    Article  PubMed  CAS  Google Scholar 

  • Graziano MS, Cooke DF, Taylor CS (2000) Coding the location of the arm by sight. Science 290:1782–1786

    Article  PubMed  CAS  Google Scholar 

  • Grefkes C, Fink GR (2005) The functional organization of the intraparietal sulcus in humans and monkeys. J Anat 207:3–17

    Article  PubMed  Google Scholar 

  • Grefkes C, Ritzl A, Zilles K, Fink GR (2004) Human medial intraparietal cortex subserves visuomotor coordinate transformation. NeuroImage 23:1494–1506

    Article  PubMed  Google Scholar 

  • Grol MJ, Majdandzić J, Stephan KE, Verhagen L, Dijkerman HC, Bekkering H, Verstraten FAJ, Toni I (2007) Parieto-frontal connectivity during visually guided grasping. J Neurosci 27:11877–11887

    Article  PubMed  CAS  Google Scholar 

  • Hagler DJ, Riecke L, Sereno MI (2007) Parietal and superior frontal visuospatial maps activated by pointing and saccades. NeuroImage 35:1562–1577

    Article  PubMed  Google Scholar 

  • Heed T, Beurze SM, Toni I, Röder B, Medendorp WP (2011) Functional rather than effector-specific organization of human posterior parietal cortex. J Neurosci 31:3066–3076

    Article  PubMed  CAS  Google Scholar 

  • Henriques DY, Crawford JD (2000) Direction-dependent distortions of retinocentric space in the visuomotor transformation for pointing. Exp Brain Res 132:179–194

    Article  PubMed  CAS  Google Scholar 

  • Henriques DYP, Crawford JD (2002) Role of eye, head, and shoulder geometry in the planning of accurate arm movements. J Neurophysiol 87:1677–1685

    PubMed  CAS  Google Scholar 

  • Henriques DY, Klier EM, Smith MA, Lowy D, Crawford JD (1998) Gaze-centered remapping of remembered visual space in an open-loop pointing task. J Neurosci 18:1583–1594

    PubMed  CAS  Google Scholar 

  • Henriques DYP, Medendorp WP, Gielen CCAM, Crawford JD (2003) Geometric computations underlying eye-hand coordination: orientations of the two eyes and the head. Exp Brain Res 152:70–78

    Article  PubMed  CAS  Google Scholar 

  • Himmelbach M, Nau M, Zündorf I, Erb M, Perenin M, Karnath H (2009) Brain activation during immediate and delayed reaching in optic ataxia. Neuropsychologia 47:1508–1517

    Article  PubMed  Google Scholar 

  • Hinkley LB, Krubitzer LA, Padberg J, Disbrow EA (2009) Visual-manual exploration and posterior parietal cortex in humans. J Neurophysiol 102:3433–3446

    Article  PubMed  Google Scholar 

  • Husain M, Nachev P (2007) Space and the parietal cortex. Trends Cogn Sci 11:30–36

    Article  PubMed  Google Scholar 

  • Iacoboni M (2006) Visuo-motor integration and control in the human posterior parietal cortex: evidence from TMS and fMRI. Neuropsychologia 44:2691–2699

    Article  PubMed  Google Scholar 

  • Jackson SR, Newport R, Mort D, Husain M (2005) Where the eye looks, the hand followslimb-dependent magnetic misreaching in optic ataxia. Curr Biol 15:42–46

    PubMed  CAS  Google Scholar 

  • Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18:314–320

    Article  PubMed  CAS  Google Scholar 

  • Johansson RS, Westling G, Bäckström A, Flanagan JR (2001) Eye-hand coordination in object manipulation. J Neurosci 21:6917–6932

    PubMed  CAS  Google Scholar 

  • Johnson PB, Ferraina S, Bianchi L, Caminiti R (1996) Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb Cortex 6:102–119

    Article  PubMed  CAS  Google Scholar 

  • Kalaska JF (1996) Parietal cortex area 5 and visuomotor behavior. Can J Physiol Pharmacol 74:483–498

    PubMed  CAS  Google Scholar 

  • Kalaska JF, Scott SH, Cisek P, Sergio LE (1997) Cortical control of reaching movements. Curr Opin Neurobiol 7:849–859

    Article  PubMed  CAS  Google Scholar 

  • Kapoula Z, Isotalo E, Müri RM, Bucci MP, Rivaud-Péchoux S (2001) Effects of transcranial magnetic stimulation of the posterior parietal cortex on saccades and vergence. NeuroReport 12:4041–4046

    Article  PubMed  CAS  Google Scholar 

  • Karnath H-O, Perenin M-T (2005) Cortical control of visually guided reaching: evidence from patients with optic ataxia. Cereb Cortex 15:1561–1569

    Article  PubMed  Google Scholar 

  • Khan AZ, Crawford JD, Blohm G, Urquizar C, Rossetti Y, Pisella L (2007) Influence of initial hand and target position on reach errors in optic ataxic and normal subjects. J Vis 7:8.1–16

    Google Scholar 

  • Koch G, Rothwell JC (2009) TMS investigations into the task-dependent functional interplay between human posterior parietal and motor cortex. Behav Brain Res 202:147–152

    Article  PubMed  Google Scholar 

  • Koch G, Del Olmo MF, Cheeran B, Schippling S, Caltagirone C, Driver J, Rothwell JC (2008) Functional interplay between posterior parietal and ipsilateral motor cortex revealed by Twin-Coil transcranial magnetic stimulation during reach planning toward contralateral space. J Neurosci 28:5944–5953

    Article  PubMed  Google Scholar 

  • Lackner JR (1988) Some proprioceptive influences on the perceptual representation of body shape and orientation. Brain 111(Pt 2):281–297

    Article  PubMed  Google Scholar 

  • Land MF, Hayhoe M (2001) In what ways do eye movements contribute to everyday activities? Vision Res 41:3559–3565

    Article  PubMed  CAS  Google Scholar 

  • Levy I, Schluppeck D, Heeger DJ, Glimcher PW (2007) Specificity of human cortical areas for reaches and saccades. J Neurosci 27:4687–4696

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453:869–878

    Article  PubMed  CAS  Google Scholar 

  • MacKay WA (1992) Properties of reach-related neuronal activity in cortical area 7A. J Neurophysiol 67:1335–1345

    PubMed  CAS  Google Scholar 

  • Marzocchi N, Breveglieri R, Galletti C, Fattori P (2008) Reaching activity in parietal area V6A of macaque: eye influence on arm activity or retinocentric coding of reaching movements? Eur J Neurosci 27:775–789

    Article  PubMed  Google Scholar 

  • Mascaro M, Battaglia-Mayer A, Nasi L, Amit DJ, Caminiti R (2003) The eye and the hand: neural mechanisms and network models for oculomanual coordination in parietal cortex. Cereb Cortex 13:1276–1286

    Article  PubMed  Google Scholar 

  • McGuire LM, Sabes PN (2009) Sensory transformations and the use of multiple reference frames for reach planning. Nat Neurosci 12:1056–1061

    Article  PubMed  CAS  Google Scholar 

  • Medendorp WP, Goltz HC, Vilis T, Crawford JD (2003) Gaze-centered updating of visual space in human parietal cortex. J Neurosci 23:6209–6214

    PubMed  CAS  Google Scholar 

  • Medendorp WP, Goltz HC, Crawford JD, Vilis T (2005) Integration of target and effector information in human posterior parietal cortex for the planning of action. J Neurophysiol 93:954–962

    Article  PubMed  Google Scholar 

  • Medendorp WP, Beurze SM, van Pelt S, van der Werf J (2008) Behavioral and cortical mechanisms for spatial coding and action planning. Cortex 44:587–597

    Article  PubMed  Google Scholar 

  • Medendorp WP, Buchholz VN, van der Werf J, Leoné FTM (2011) Parietofrontal circuits in goal-oriented behaviour. Eur J Neurosci 33:2017–2027

    Article  PubMed  Google Scholar 

  • Meier JD, Aflalo TN, Kastner S, Graziano MS (2008) Complex organization of human primary motor cortex: a high-resolution fMRI study. J Neurophysiol 100:1800–1812

    Article  PubMed  Google Scholar 

  • Merriam EP, Genovese CR, Colby CL (2003) Spatial updating in human parietal cortex. Neuron 39:361–373

    Article  PubMed  CAS  Google Scholar 

  • Milner AD (1996) Neglect, extinction, and the cortical streams of visual processing. In: Thier P, H-O K (eds) Parietal lobe contributions to orientation in 3D space. Springer, Heidelberg, Germany, pp 3–22

    Google Scholar 

  • Milner AD, Goodale MA (1995) The visual brain in action, 1st edn. Oxford University Press, Oxford; New York

    Google Scholar 

  • Milner AD, Goodale MA (2008) Two visual systems re-viewed. Neuropsychologia 46:774–785

    Article  PubMed  CAS  Google Scholar 

  • Morris AP, Chambers CD, Mattingley JB (2007) Parietal stimulation destabilizes spatial updating across saccadic eye movements. Proc Nat Acad Sci USA 104:9069–9074

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38:871–908

    PubMed  CAS  Google Scholar 

  • Muri R, Nyffeler T (2008) Neurophysiology and neuroanatomy of reflexive and volitional saccades as revealed by lesion studies with neurological patients and transcranial magnetic stimulation (TMS). Brain Cogn 68:284–292

    Article  PubMed  Google Scholar 

  • Muri RM, Iba-Zizen MT, Derosier C, Cabanis EA, Pierrot-Deseilligny C (1996) Location of the human posterior eye field with functional magnetic resonance imaging. J Neurol Neurosurg Psychiatry 60:445–448

    Article  PubMed  CAS  Google Scholar 

  • Müri RM, Vermersch AI, Rivaud S, Gaymard B, Pierrot-Deseilligny C (1996) Effects of single-pulse transcranial magnetic stimulation over the prefrontal and posterior parietal cortices during memory-guided saccades in humans. J Neurophysiol 76:2102–2106

    PubMed  Google Scholar 

  • Müri RM, Gaymard B, Rivaud S, Vermersch A, Hess CW, Pierrot-Deseilligny C (2000) Hemispheric asymmetry in cortical control of memory-guided saccades. A transcranial magnetic stimulation study. Neuropsychologia 38:1105–1111

    Article  PubMed  Google Scholar 

  • Neggers SF, Bekkering H (2000) Ocular gaze is anchored to the target of an ongoing pointing movement. J Neurophysiol 83:639–651

    PubMed  CAS  Google Scholar 

  • Neggers SF, Bekkering H (2001) Gaze anchoring to a pointing target is present during the entire pointing movement and is driven by a non-visual signal. J Neurophysiol 86:961–970

    PubMed  CAS  Google Scholar 

  • Nelissen K, Vanduffel W (2011) Grasping-related functional magnetic resonance imaging brain responses in the macaque monkey. J Neurosci 31:8220–8229

    Article  PubMed  CAS  Google Scholar 

  • Nobre AC, Gitelman DR, Dias EC, Mesulam MM (2000) Covert visual spatial orienting and saccades: overlapping neural systems. NeuroImage 11:210–216

    Article  PubMed  CAS  Google Scholar 

  • Nyffeler T, Egli A, Pflugshaupt T, von Wartburg R, Wurtz P, Mosimann U, Hess CW, Müri RM (2005) The role of the human posterior parietal cortex in memory-guided saccade execution: a double-pulse transcranial magnetic stimulation study. Eur J Neurosci 22:535–538

    Article  PubMed  Google Scholar 

  • Oyachi H, Ohtsuka K (1995) Transcranial magnetic stimulation of the posterior parietal cortex degrades accuracy of memory-guided saccades in humans. Invest Ophthalmol Vis Sci 36:1441–1449

    PubMed  CAS  Google Scholar 

  • Pare M, Wurtz RH (2001) Progression in neuronal processing for saccadic eye movements from parietal cortex area lip to superior colliculus. J Neurophysiol 85:2545–2562

    PubMed  CAS  Google Scholar 

  • Pellijeff A, Bonilha L, Morgan PS, McKenzie K, Jackson SR (2006) Parietal updating of limb posture: an event-related fMRI study. Neuropsychologia 44:2685–2690

    Article  PubMed  Google Scholar 

  • Perenin MT, Vighetto A (1988) Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain J Neurol 111(Pt 3):643–674

    Google Scholar 

  • Pesaran B, Musallam S, Andersen RA (2006) Cognitive neural prosthetics. Curr Biol CB 16:R77–R80

    Article  CAS  Google Scholar 

  • Pesaran B, Nelson MJ, Andersen RA (2010) A relative position code for saccades in dorsal premotor cortex. J Neurosci 30:6527–6537

    Article  PubMed  CAS  Google Scholar 

  • Pierrot-Deseilligny C, Rivaud S, Gaymard B, Agid Y (1991) Cortical control of memory-guided saccades in man. Exp Brain Res 83:607–617

    Article  PubMed  CAS  Google Scholar 

  • Pierrot-Deseilligny C, Milea D, Müri RM (2004) Eye movement control by the cerebral cortex. Curr Opin Neurol 17:17–25

    Article  PubMed  Google Scholar 

  • Pisella L, Gréa H, Tilikete C, Vighetto A, Desmurget M, Rode G, Boisson D, Rossetti Y (2000) An ‘automatic pilot’ for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia. Nat Neurosci 3:729–736

    Article  PubMed  CAS  Google Scholar 

  • Pisella L, Sergio L, Blangero A, Torchin H, Vighetto A, Rossetti Y (2009) Optic ataxia and the function of the dorsal stream: contributions to perception and action. Neuropsychologia 47:3033–3044

    Article  PubMed  Google Scholar 

  • Pitzalis S, Galletti C, Huang R-S, Patria F, Committeri G, Galati G, Fattori P, Sereno MI (2006) Wide-field retinotopy defines human cortical visual area v6. J Neurosci 26:7962–7973

    Article  PubMed  CAS  Google Scholar 

  • Prablanc C, Echallier JF, Komilis E, Jeannerod M (1979) Optimal response of eye and hand motor systems in pointing at a visual target. I. Spatio-temporal characteristics of eye and hand movements and their relationships when varying the amount of visual information. Biol Cybern 35:113–124

    Article  PubMed  CAS  Google Scholar 

  • Prado J, Clavagnier S, Otzenberger H, Scheiber C, Kennedy H, Perenin M-T (2005) Two cortical systems for reaching in central and peripheral vision. Neuron 48:849–858

    Article  PubMed  CAS  Google Scholar 

  • Prime SL, Vesia M, Crawford JD (2008) Transcranial magnetic stimulation over posterior parietal cortex disrupts transsaccadic memory of multiple objects. J Neurosci 28:6938–6949

    Article  PubMed  CAS  Google Scholar 

  • Rice NJ, Tunik E, Grafton ST (2006) The anterior intraparietal sulcus mediates grasp execution, independent of requirement to update: new insights from transcranial magnetic stimulation. J Neurosci 26:8176–8182

    Article  PubMed  CAS  Google Scholar 

  • Rice NJ, Tunik E, Cross ES, Grafton ST (2007) On-line grasp control is mediated by the contralateral hemisphere. Brain Res 1175:76–84

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31:889–901

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153:146–157

    Article  PubMed  Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (1997) Parietal cortex: from sight to action. Curr Opin Neurobiol 7:562–567

    Article  PubMed  CAS  Google Scholar 

  • Rossetti Y, Desmurget M, Prablanc C (1995) Vectorial coding of movement: vision, proprioception, or both? J Neurophysiol 74:457–463

    PubMed  CAS  Google Scholar 

  • Rossetti Y, Pisella L, Vighetto A (2003) Optic ataxia revisited: visually guided action versus immediate visuomotor control. Exp Brain Res 153:171–179

    Article  PubMed  Google Scholar 

  • Rothwell JC (2011) Using transcranial magnetic stimulation methods to probe connectivity between motor areas of the brain. Human Mov Sci 30:906–915

    Article  Google Scholar 

  • Ryan S, Bonilha L, Jackson SR (2006) Individual variation in the location of the parietal eye fields: a TMS study. Exp Brain Res 173:389–394

    Article  PubMed  Google Scholar 

  • Schall JD, Thompson KG (1999) Neural selection and control of visually guided eye movements. Annu Rev Neurosci 22:241–259

    Article  PubMed  CAS  Google Scholar 

  • Schluppeck D, Glimcher P, Heeger DJ (2005) Topographic organization for delayed saccades in human posterior parietal cortex. J Neurophysiol 94:1372–1384

    Article  PubMed  Google Scholar 

  • Schluppeck D, Curtis CE, Glimcher PW, Heeger DJ (2006) Sustained activity in topographic areas of human posterior parietal cortex during memory-guided saccades. J Neurosci 26:5098–5108

    Article  PubMed  CAS  Google Scholar 

  • Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354

    Article  PubMed  CAS  Google Scholar 

  • Sergio L, Gorbet DJ, Tippett WJ, Yan X, Neagu B (2009) When what you see isn’t where you get: cortical mechanisms of vision for complex action. In: Jenkin M, Harris L (eds) Cortical mechanisms of vision. Cambridge University Press, Cambridge, pp 81–118

    Google Scholar 

  • Shikata E, Hamzei F, Glauche V, Koch M, Weiller C, Binkofski F, Buchel C (2003) Functional properties and interaction of the anterior and posterior intraparietal areas in humans. Eur J Neurosci 17:1105–1110

    Article  PubMed  Google Scholar 

  • Smyrnis N, Theleritis C, Evdokimidis I, Müri RM, Karandreas N (2003) Single-pulse transcranial magnetic stimulation of parietal and prefrontal areas in a memory delay arm pointing task. J Neurophysiol 89:3344–3350

    Article  PubMed  Google Scholar 

  • Snyder LH, Batista AP, Andersen RA (1997) Coding of intention in the posterior parietal cortex. Nature 386:167–170

    Article  PubMed  CAS  Google Scholar 

  • Snyder LH, Batista AP, Andersen RA (2000) Saccade-related activity in the parietal reach region. J Neurophysiol 83:1099–1102

    PubMed  CAS  Google Scholar 

  • Snyder LH, Calton JL, Dickinson AR, Lawrence BM (2002) Eye-hand coordination: saccades are faster when accompanied by a coordinated arm movement. J Neurophysiol 87:2279–2286

    PubMed  Google Scholar 

  • Sober SJ, Sabes PN (2003) Multisensory integration during motor planning. J Neurosci 23:6982–6992

    PubMed  CAS  Google Scholar 

  • Sober SJ, Sabes PN (2005) Flexible strategies for sensory integration during motor planning. Nat Neurosci 8:490–497

    PubMed  CAS  Google Scholar 

  • Stepniewska I, Fang PC, Kaas JH (2005) Microstimulation reveals specialized subregions for different complex movements in posterior parietal cortex of prosimian galagos. Proc Natl Acad Sci USA 102:4878–4883

    Article  PubMed  CAS  Google Scholar 

  • Striemer CL, Chouinard PA, Goodale MA (2011) Programs for action in superior parietal cortex: a triple-pulse TMS investigation. Neuropsychologia 49(9):2391–2399

    Google Scholar 

  • Taira M, Mine S, Georgopoulos AP, Murata A, Sakata H (1990) Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Exp Brain Res 83:29–36

    Article  PubMed  CAS  Google Scholar 

  • Tanne-Gariepy J, Rouiller EM, Boussaoud D (2002) Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: evidence for largely segregated visuomotor pathways. Exp Brain Res 145:91–103

    Article  PubMed  Google Scholar 

  • Terao Y, Andersson NE, Flanagan JR, Johansson RS (2002) Engagement of gaze in capturing targets for future sequential manual actions. J Neurophysiol 88:1716–1725

    PubMed  Google Scholar 

  • Thura D, Boussaoud D, Meunier M (2008) Hand position affects saccadic reaction times in monkeys and humans. J Neurophysiol 99:2194–2202

    Article  PubMed  Google Scholar 

  • Todorov E (2000) Direct cortical control of muscle activation in voluntary arm movements: a model. Nat Neurosci 3:391–398

    Article  PubMed  CAS  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235

    Article  PubMed  CAS  Google Scholar 

  • Tosoni A, Galati G, Romani GL, Corbetta M (2008) Sensory-motor mechanisms in human parietal cortex underlie arbitrary visual decisions. Nat Neurosci 11:1446–1453

    Article  PubMed  CAS  Google Scholar 

  • Trillenberg P, Sprenger A, Petersen D, Kömpf D, Heide W, Helmchen C (2007) Functional dissociation of saccade and hand reaching control with bilateral lesions of the medial wall of the intraparietal sulcus: implications for optic ataxia. NeuroImage 36(Suppl 2):T69–T76

    Article  PubMed  Google Scholar 

  • Tunik E, Frey SH, Grafton ST (2005) Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci 8:505–511

    PubMed  CAS  Google Scholar 

  • Tunik E, Rice NJ, Hamilton A, Grafton ST (2007) Beyond grasping: representation of action in human anterior intraparietal sulcus. NeuroImage 36:T77–T86

    Article  PubMed  Google Scholar 

  • Ungerleider L, Mishkin M (1982) Two cortical visual systems. In: Ingle D, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586

  • van der Werf J, Jensen O, Fries P, Medendorp WP (2010) Neuronal synchronization in human posterior parietal cortex during reach planning. J Neurosci 30:1402–1412

    Article  CAS  Google Scholar 

  • van Donkelaar P (1998) Saccade amplitude influences pointing movement kinematics. NeuroReport 9:2015–2018

    Article  PubMed  Google Scholar 

  • van Donkelaar P, Adams J (2005) Gaze-dependent deviation in pointing induced by transcranial magnetic stimulation over the human posterior parietal cortex. J Mot Behav 37:157–163

    Article  PubMed  Google Scholar 

  • van Donkelaar P, Lee JH, Drew AS (2000) Transcranial magnetic stimulation disrupts eye-hand interactions in the posterior parietal cortex. J Neurophysiol 84:1677–1680

    PubMed  Google Scholar 

  • Vercher JL, Magenes G, Prablanc C, Gauthier GM (1994) Eye-head-hand coordination in pointing at visual targets: spatial and temporal analysis. Exp Brain Res 99:507–523

    Article  PubMed  CAS  Google Scholar 

  • Vesia M, Monteon JA, Sergio LE, Crawford JD (2006) Hemispheric asymmetry in memory-guided pointing during single-pulse transcranial magnetic stimulation of human parietal cortex. J Neurophysiol 96:3016–3027

    Article  PubMed  Google Scholar 

  • Vesia M, Yan X, Henriques DY, Sergio LE, Crawford JD (2008) Transcranial magnetic stimulation over human dorsal-lateral posterior parietal cortex disrupts integration of hand position signals into the reach plan. J Neurophysiol 100:2005–2014

    Article  PubMed  Google Scholar 

  • Vesia M, Prime SL, Yan X, Sergio LE, Crawford JD (2010) Specificity of human parietal saccade and reach regions during transcranial magnetic stimulation. J Neurosci 30:13053–13065

    Article  PubMed  CAS  Google Scholar 

  • Wise SP, Boussaoud D, Johnson PB, Caminiti R (1997) Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu Rev Neurosci 20:25–42

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM (1997) Computational approaches to motor control. Trends Cogn Sci 1:209–216

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3(Suppl):1212–1217

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Goodbody SJ, Husain M (1998) Maintaining internal representations: the role of the human superior parietal lobe. Nat Neurosci 1:529–533

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Kapoula Z (2004) TMS over the left posterior parietal cortex prolongs latency of contralateral saccades and convergence. IOVS 45:2231–2239

    Google Scholar 

  • Zettel JL, Culham J, Vilis T, Crawford JD (2007) A comparison of saccade and pointing topography in the human posterior parietal cortex. In: Society for neuroscience, vol 33. Abstr, San Diego, CA, p 508.12

Download references

Acknowledgments

This work was supported by grants from the Canadian Institutes of Health Research (CIHR), National Science and Engineering Research Council and Canada Foundation for Innovation (CFI) to J.D. Crawford. J.D. Crawford is supported by a CIHR Canada Research Chair, and M. Vesia is supported by Heart and Stroke Foundation of Ontario Centre for Stroke Recovery and Ontario Ministry of Research and Innovation Fellowships. We thank L. Pisella and W.R. Staines for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Vesia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vesia, M., Crawford, J.D. Specialization of reach function in human posterior parietal cortex. Exp Brain Res 221, 1–18 (2012). https://doi.org/10.1007/s00221-012-3158-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3158-9

Keywords

Navigation