Skip to main content
Log in

Basal ganglia-dependent processes in recalling learned visual-motor adaptations

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Humans learn and remember motor skills to permit adaptation to a changing environment. During adaptation, the brain develops new sensory–motor relationships that become stored in an internal model (IM) that may be retained for extended periods. How the brain learns new IMs and transforms them into long-term memory remains incompletely understood since prior work has mostly focused on the learning process. A current model suggests that basal ganglia, cerebellum, and their neocortical targets actively participate in forming new IMs but that a cerebellar cortical network would mediate automatization. However, a recent study (Marinelli et al. 2009) reported that patients with Parkinson’s disease (PD), who have basal ganglia dysfunction, had similar adaptation rates as controls but demonstrated no savings at recall tests (24 and 48 h). Here, we assessed whether a longer training session, a feature known to increase long-term retention of IM in healthy individuals, could allow PD patients to demonstrate savings. We recruited PD patients and age-matched healthy adults and used a visual-motor adaptation paradigm similar to the study by Marinelli et al. (2009), doubling the number of training trials and assessed recall after a short and a 24-h delay. We hypothesized that a longer training session would allow PD patients to develop an enhanced representation of the IM as demonstrated by savings at the recall tests. Our results showed that PD patients had similar adaptation rates as controls but did not demonstrate savings at both recall tests. We interpret these results as evidence that fronto-striatal networks have involvement in the early to late phase of motor memory formation, but not during initial learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agostino R, Curra A, Soldati G, Dinapoli L, Chiacchiari L, Modugno N, Pierelli F, Berardelli A (2004) Prolonged practice is of scarce benefit in improving motor performance in Parkinson’s disease. Mov Disord 19:1285–1293

    Article  PubMed  Google Scholar 

  • Bédard P, Sanes JN (2009) On a basal ganglia role in learning and rehearsing visual-motor associations. Neuroimage 47:1701–1710

    Article  PubMed  Google Scholar 

  • Behrman AL, Cauraugh JH, Light KE (2000) Practice as an intervention to improve speeded motor performance and motor learning in Parkinson’s disease. J Neurol Sci 174:127–136

    Article  PubMed  CAS  Google Scholar 

  • Berardelli A, Rothwell JC, Thompson PD, Hallett M (2001) Pathophysiology of bradykinesia in Parkinson’s disease. Brain 124:2131–2146

    Article  PubMed  CAS  Google Scholar 

  • Bock O, Schneider S, Bloomberg J (2001) Conditions for interference versus facilitation during sequential sensorimotor adaptation. Exp Brain Res 138:359–365

    Article  PubMed  CAS  Google Scholar 

  • Boecker H, Ceballos-Baumann A, Bartenstein P, Weindl A, Siebner HR, Fassbender T, Munz F, Schwaiger M, Conrad B (1999) Sensory processing in Parkinson’s and Huntington’s disease: investigations with 3D H(2)(15)O-PET. Brain 122:1651–1665

    Article  PubMed  Google Scholar 

  • Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436

    Article  PubMed  CAS  Google Scholar 

  • Brashers-Krug T, Shadmehr R, Bizzi E (1996) Consolidation in human motor memory. Nature 382:252–255

    Article  PubMed  CAS  Google Scholar 

  • Caithness G, Osu R, Bays P, Chase H, Klassen J, Kawato M, Wolpert DM, Flanagan JR (2004) Failure to consolidate the consolidation theory of learning for sensorimotor adaptation tasks. J Neurosci 24:8662–8671

    Article  PubMed  CAS  Google Scholar 

  • Contreras-Vidal JL, Buch ER (2003) Effects of Parkinson’s disease on visuomotor adaptation. Exp Brain Res 150:25–32

    PubMed  Google Scholar 

  • Demirci M, Grill S, McShane L, Hallett M (1997) A mismatch between kinesthetic and visual perception in Parkinson’s disease. Ann Neurol 41:781–788

    Article  PubMed  CAS  Google Scholar 

  • Doyon J, Benali H (2005) Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol 15:161–167

    Article  PubMed  CAS  Google Scholar 

  • Doyon J, Laforce RJ, Bouchard G, Gaudreau D, Roy J, Poirier M, Bedard PJ, Bedard F, Bouchard JP (1998) Role of the striatum, cerebellum and frontal lobes in the automatization of a repeated visuomotor sequence of movements. Neuropsychologia 36:625–641

    Article  PubMed  CAS  Google Scholar 

  • Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Ungerleider LG (2002) Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci U S A 99:1017–1022

    Article  PubMed  CAS  Google Scholar 

  • Doyon J, Penhune V, Ungerleider LG (2003) Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia 41:252–262

    Article  PubMed  Google Scholar 

  • Doyon J, Bellec P, Amsel R, Penhune V, Monchi O, Carrier J, Lehericy S, Benali H (2009) Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav Brain Res 199:61–75

    Article  PubMed  Google Scholar 

  • Floyer-Lea A, Matthews PM (2004) Changing brain networks for visuomotor control with increased movement automaticity. J Neurophysiol 92:2405–2412

    Article  PubMed  CAS  Google Scholar 

  • Floyer-Lea A, Matthews PM (2005) Distinguishable brain activation networks for short- and long-term motor skill learning. J Neurophysiol 94:512–518

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM (2005) The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol 15:638–644

    Article  PubMed  CAS  Google Scholar 

  • Grol MJ, de Lange FP, Verstraten FA, Passingham RE, Toni I (2006) Cerebral changes during performance of overlearned arbitrary visuomotor associations. J Neurosci 26:117–125

    Article  PubMed  CAS  Google Scholar 

  • Joiner WM, Smith MA (2008) Long-term retention explained by a model of short-term learning in the adaptive control of reaching. J Neurophysiol 100:2948–2955

    Article  PubMed  Google Scholar 

  • Klassen J, Tong C, Flanagan JR (2005) Learning and recall of incremental kinematic and dynamic sensorimotor transformations. Exp Brain Res 164:250–259

    Article  PubMed  Google Scholar 

  • Klockgether T, Borutta M, Rapp H, Spieker S, Dichgans J (1995) A defect of kinesthesia in Parkinson’s disease. Mov Disord 10:460–465

    Article  PubMed  CAS  Google Scholar 

  • Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci 20:8916–8924

    PubMed  CAS  Google Scholar 

  • Krakauer JW, Ghilardi MF, Mentis M, Barnes A, Veytsman M, Eidelberg D, Ghez C (2004) Differential cortical and subcortical activations in learning rotations and gains for reaching: a PET study. J Neurophysiol 91:924–933

    Article  PubMed  Google Scholar 

  • Krakauer JW, Ghez C, Ghilardi MF (2005) Adaptation to visuomotor transformations: consolidation, interference, and forgetting. J Neurosci 25:473–478

    Article  PubMed  CAS  Google Scholar 

  • Krebs HI, Hogan N, Hening W, Adamovich SV, Poizner H (2001) Procedural motor learning in Parkinson’s disease. Exp Brain Res 141:425–437

    Article  PubMed  CAS  Google Scholar 

  • Krueger WCF (1929) The effect of overlearning on retention. J Exp Psychol 12:71–78

    Article  Google Scholar 

  • Luh CW (1922) The conditions of retention. Psychol Monogr 31:1–87

    Google Scholar 

  • Marinelli L, Crupi D, Di Rocco A, Bove M, Eidelberg D, Abbruzzese G, Ghilardi MF (2009) Learning and consolidation of visuo-motor adaptation in Parkinson’s disease. Parkinsonism Relat Disord 15:6–11

    Article  PubMed  Google Scholar 

  • Mazzoni P, Krakauer JW (2006) An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci 26:3642–3645

    Article  PubMed  CAS  Google Scholar 

  • Messier J, Adamovich S, Jack D, Hening W, Sage J, Poizner H (2007) Visuomotor learning in immersive 3D virtual reality in Parkinson’s disease and in aging. Exp Brain Res 179:457–474

    Article  PubMed  Google Scholar 

  • Mochizuki-Kawai H, Kawamura M, Hasegawa Y, Mochizuki S, Oeda R, Yamanaka K, Tagaya H (2004) Deficits in long-term retention of learned motor skills in patients with cortical or subcortical degeneration. Neuropsychologia 42:1858–1863

    PubMed  Google Scholar 

  • Muslimovic D, Post B, Speelman JD, Schmand B (2007) Motor procedural learning in Parkinson’s disease. Brain 130:2887–2897

    Article  PubMed  CAS  Google Scholar 

  • Nezafat R, Shadmehr R, Holcomb HH (2001) Long-term adaptation to dynamics of reaching movements: a PET study. Exp Brain Res 140:66–76

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Paquet F, Bedard MA, Levesque M, Tremblay PL, Lemay M, Blanchet PJ, Scherzer P, Chouinard S, Filion J (2008) Sensorimotor adaptation in Parkinson’s disease: evidence for a dopamine dependent remapping disturbance. Exp Brain Res 185:227–236

    Article  PubMed  CAS  Google Scholar 

  • Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10:437–442

    Article  PubMed  CAS  Google Scholar 

  • Penhune VB, Doyon J (2002) Dynamic cortical and subcortical networks in learning and delayed recall of timed motor sequences. J Neurosci 22:1397–1406

    PubMed  CAS  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rand MK, Stelmach GE, Bloedel JR (2000) Movement accuracy constraints in Parkinson’s disease patients. Neuropsychologia 38:203–212

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (2006) Behavioral theories and the neurophysiology of reward. Annu Rev Psychol 57:87–115

    Article  PubMed  Google Scholar 

  • Seidler RD, Noll DC, Chintalapati P (2006) Bilateral basal ganglia activation associated with sensorimotor adaptation. Exp Brain Res 175:544–555

    Article  PubMed  CAS  Google Scholar 

  • Seidler RD, Tuite P, Ashe J (2007) Selective impairments in implicit learning in Parkinson’s disease. Brain Res 1137:104–110

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277:821–825

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Holcomb HH (1999) Inhibitory control of competing motor memories. Exp Brain Res 126:235–251

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Wise SP (2005) The computational neurobiology of reaching and pointing: a foundation for motor learning. MIT press, Cambridge, MA

    Google Scholar 

  • Smiley-Oyen AL, Lowry KA, Emerson QR (2006) Learning and retention of movement sequences in Parkinson’s disease. Mov Disord 21:1078–1087

    Article  PubMed  Google Scholar 

  • Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93:2809–2821

    Article  PubMed  Google Scholar 

  • Stern Y, Mayeux R, Hermann A, Rosen J (1988) Prism adaptation in Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:1584–1587

    Article  PubMed  CAS  Google Scholar 

  • Wang XP, Sun BM, Ding HL (2009) Changes of procedural learning in Chinese patients with non-demented Parkinson disease. Neurosci Lett 449:161–163

    Article  PubMed  CAS  Google Scholar 

  • Weiner MJ, Hallett M, Funkenstein HH (1983) Adaptation to lateral displacement of vision in patients with lesions of the central nervous system. Neurology 33:766–772

    PubMed  CAS  Google Scholar 

  • Yin PB, Kitazawa S (2001) Long-lasting aftereffects of prism adaptation in the monkey. Exp Brain Res 141:250–253

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome N. Sanes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bédard, P., Sanes, J.N. Basal ganglia-dependent processes in recalling learned visual-motor adaptations. Exp Brain Res 209, 385–393 (2011). https://doi.org/10.1007/s00221-011-2561-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2561-y

Keywords

Navigation