Skip to main content

Advertisement

Log in

Genetic regulation of microglia activation, complement expression, and neurodegeneration in a rat model of traumatic brain injury

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Secondary brain damage following traumatic brain injury in part depends on neuroinflammation, a process where genetic factors may play an important role. We examined the response to a standardized cortical contusion in two different inbred rat strains, Dark Agouti (DA) and Piebald Virol Glaxo (PVG). Both are well characterized in models of autoimmune neuroinflammation, where DA is susceptible and PVG resistant. We found that infiltration of polymorphonuclear granulocytes (PMN) at 3-day postinjury was more pronounced in PVG. DA was more infiltrated by T cells at 3-day postinjury, showed an enhanced glial activation at 7-day postinjury and higher expression of C3 complement at 7-day postinjury. Neurodegeneration, assessed by Fluoro-Jade, was also more pronounced in the DA strain at 30-day postinjury. These results demonstrate differences in the response to cortical contusion injury attributable to genetic influences and suggest a link between injury-induced inflammation and neurodegeneration. Genetic factors that regulate inflammation elicited by brain trauma may be important for the development of secondary brain damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

cDNA:

Complementary DNA

CNS:

Central nervous system

DA:

Dark Agouti

DAB:

3,3′-diaminobenzidine

DDT:

Dithiothreitol

dH2O:

Distilled water

DNA:

Deoxyribonucleic acid

EAE:

Experimental allergic encephalitis

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GFAP:

Glial fibrillary acidic protein

IR:

Immunoreactivity

MAC:

Membrane attack complex

MHC:

Major Histocompatibility Complex

mRNA:

Messenger RNA

PBS:

Phosphate Buffer solution

PCR:

Polymerase chain reaction

PMN:

Polymorphonuclear granulocytes

PVG :

Piebald Virol Glaxo

RNA:

Ribonucleic acid

ROI:

Region of interest

RT-PCR:

Reverse transcriptase-polymerase chain reaction

TBI:

Traumatic brain injury

References

  • Barclay AN (1981) The localization of populations of lymphocytes defined by monoclonal antibodies in rat lymphoid tissues. Immunology 42:593–600

    CAS  PubMed  Google Scholar 

  • Bellander BM, von Holst H, Fredman P, Svensson M (1996) Activation of the complement cascade and increase of clusterin in the brain following a cortical contusion in the adult rat. J Neurosurg 85:468–475

    Article  CAS  PubMed  Google Scholar 

  • Bellander BM, Singhrao SK, Ohlsson M, Mattsson P, Svensson M (2001) Complement activation in the human brain after traumatic head injury. J Neurotrauma 18:1295–1311

    Article  CAS  PubMed  Google Scholar 

  • Bellander BM, Bendel O, Von Euler G, Ohlsson M, Svensson M (2004) Activation of microglial cells and complement following traumatic injury in rat entorhinal-hippocampal slice cultures. J Neurotrauma 21:605–615

    Article  PubMed  Google Scholar 

  • Boje KM, Arora PK (1992) Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 587:250–256

    Article  CAS  PubMed  Google Scholar 

  • Brown EJ (1991) Complement receptors and phagocytosis. Curr Opin Immunol 3:76–82

    Article  CAS  PubMed  Google Scholar 

  • Bruck W, Friede RL (1991) The role of complement in myelin phagocytosis during PNS wallerian degeneration. J Neurol Sci 103:182–187

    Article  CAS  PubMed  Google Scholar 

  • Campbell AK, Daw RA, Hallett MB, Luzio JP (1981) Direct measurement of the increase in intracellular free calcium ion concentration in response to the action of complement. Biochem J 194:551–560

    CAS  PubMed  Google Scholar 

  • Dallman MJ, Thomas ML, Green JR (1984) MRC OX-19: a monoclonal antibody that labels rat T lymphocytes and augments in vitro proliferative responses. Eur J Immunol 14:260–267

    Article  CAS  PubMed  Google Scholar 

  • Damoiseaux JG, Dopp EA, Calame W, Chao D, MacPherson GG, Dijkstra CD (1994) Rat macrophage lysosomal membrane antigen recognized by monoclonal antibody ED1. Immunology 83:140–147

    CAS  PubMed  Google Scholar 

  • de Bruijn MH, Fey GH (1985) Human complement component C3: cDNA coding sequence and derived primary structure. Proc Natl Acad Sci USA 82:708–712

    Article  PubMed  Google Scholar 

  • Esser AF (1991) Big MAC attack: complement proteins cause leaky patches. Immunol Today 12: 316–318 (discussion 321)

    Google Scholar 

  • Faden AI, Demediuk P, Panter SS, Vink R (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244:798–800

    Article  CAS  PubMed  Google Scholar 

  • Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG (1981) Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res 211:67–77

    Article  CAS  PubMed  Google Scholar 

  • Fox GB, LeVasseur RA, Faden AI (1999) Behavioral responses of C57BL/6, FVB/N, and 129/SvEMS mouse strains to traumatic brain injury: implications for gene targeting approaches to neurotrauma. J Neurotrauma 16:377–389

    Article  CAS  PubMed  Google Scholar 

  • Frank MM, Fries LF (1991) The role of complement in inflammation and phagocytosis. Immunol Today 12:322–326

    Article  CAS  PubMed  Google Scholar 

  • Friedman G, Froom P, Sazbon L, Grinblatt I, Shochina M, Tsenter J, Babaey S, Yehuda B, Groswasser Z (1999) Apolipoprotein E-epsilon4 genotype predicts a poor outcome in survivors of traumatic brain injury. Neurology 52:244–248

    CAS  PubMed  Google Scholar 

  • Giulian D, Ingeman JE (1988) Colony-stimulating factors as promotors of ameboid microglia. J Neurosci 8:4707–4717

    CAS  PubMed  Google Scholar 

  • Giulian D, Vaca K, Corpuz M (1993) Brain glia release factors with opposing actions upon neuronal survival. J Neurosci 13:29–37

    CAS  PubMed  Google Scholar 

  • Harlan JM (1985) Leukocyte-endothelial interactions. Blood 65:513–525

    CAS  PubMed  Google Scholar 

  • Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28:254–260

    Article  CAS  PubMed  Google Scholar 

  • Holmin S, Mathiesen T, Shetye J, Biberfeld P (1995) Intracerebral inflammatory response to experimental brain contusion. Acta Neurochir (Wien) 132:110–119

    Article  CAS  Google Scholar 

  • Ikeda Y, Long DM (1990) The molecular basis of brain injury and brain edema: the role of oxygen free radicals. Neurosurgery 27:1–11

    Article  CAS  PubMed  Google Scholar 

  • Inman D, Guth L, Steward O (2002) Genetic influences on secondary degeneration and wound healing following spinal cord injury in various strains of mice. J Comp Neurol 451:225–235

    Article  PubMed  Google Scholar 

  • Katayama Y, Maeda T, Koshinaga M, Kawamata T, Tsubokawa T (1995) Role of excitatory amino acid-mediated ionic fluxes in traumatic brain injury. Brain Pathol 5:427–435

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T (1991) Biology of complement: the overture. Immunol Today 12:291–295

    Article  CAS  PubMed  Google Scholar 

  • Kochanek PM, Hallenbeck JM (1992) Polymorphonuclear leukocytes and monocytes/macrophages in the pathogenesis of cerebral ischemia and stroke. Stroke 23:1367–1379

    CAS  PubMed  Google Scholar 

  • Kontos HA, Wei EP (1986) Superoxide production in experimental brain injury. J Neurosurg 64:803–807

    Article  CAS  PubMed  Google Scholar 

  • Koshinaga M, Katayama Y, Fukushima M, Oshima H, Suma T, Takahata T (2000) Rapid and widespread microglial activation induced by traumatic brain injury in rat brain slices. J Neurotrauma 17:185–192

    Article  CAS  PubMed  Google Scholar 

  • Leinhase I, Schmidt OI, Thurman JM, Hossini AM, Rozanski M, Taha ME, Scheffler A, John T, Smith WR, Holers VM, Stahel PF (2006) Pharmacological complement inhibition at the C3 convertase level promotes neuronal survival, neuroprotective intracerebral gene expression, and neurological outcome after traumatic brain injury. Exp Neurol 199:454–464

    Article  CAS  PubMed  Google Scholar 

  • Lidman O, Fraidakis M, Lycke N, Olson L, Olsson T, Piehl F (2002) Facial nerve lesion response; strain differences but no involvement of IFN-gamma, STAT4 or STAT6. Neuroreport 13:1589–1593

    Article  CAS  PubMed  Google Scholar 

  • Lidman O, Swanberg M, Horvath L, Broman KW, Olsson T, Piehl F (2003) Discrete gene loci regulate neurodegeneration, lymphocyte infiltration, and major histocompatibility complex class II expression in the CNS. J Neurosci 23:9817–9823

    CAS  PubMed  Google Scholar 

  • Lorentzen JC, Andersson M, Issazadeh S, Dahlman I, Luthman H, Weissert R, Olsson T (1997) Genetic analysis of inflammation, cytokine mRNA expression and disease course of relapsing experimental autoimmune encephalomyelitis in DA rats. J Neuroimmunol 80:31–37

    Article  PubMed  Google Scholar 

  • Lucchesi BR, Mullane KM (1986) Leukocytes and ischemia-induced myocardial injury. Annu Rev Pharmacol Toxicol 26:201–224

    Article  CAS  PubMed  Google Scholar 

  • Lundberg C, Lidman O, Holmdahl R, Olsson T, Piehl F (2001) Neurodegeneration and glial activation patterns after mechanical nerve injury are differentially regulated by non-MHC genes in congenic inbred rat strains. J Comp Neurol 431:75–87

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Akiyama H, Itagaki S, McGeer EG (1989) Immune system response in Alzheimer’s disease. Can J Neurol Sci 16:516–527

    CAS  PubMed  Google Scholar 

  • McGeer PL, Kawamata T, Walker DG, Akiyama H, Tooyama I, McGeer EG (1993) Microglia in degenerative neurological disease. Glia 7:84–92

    Article  CAS  PubMed  Google Scholar 

  • Morgan BP (1999) Regulation of the complement membrane attack pathway. Crit Rev Immunol 19:173–198

    CAS  PubMed  Google Scholar 

  • Morganti-Kossman MC, Lenzlinger PM, Hans V, Stahel P, Csuka E, Ammann E, Stocker R, Trentz O, Kossmann T (1997) Production of cytokines following brain injury: beneficial and deleterious for the damaged tissue. Mol Psychiatry 2:133–136

    Article  CAS  PubMed  Google Scholar 

  • Ohlsson M, Bellander BM, Langmoen IA, Svensson M (2003) Complement activation following optic nerve crush in the adult rat. J Neurotrauma 20:895–904

    Article  PubMed  Google Scholar 

  • Okusawa S, Dinarello CA, Yancey KB, Endres S, Lawley TJ, Frank MM, Burke JF, Gelfand JA (1987) C5a induction of human interleukin 1, synergistic effect with endotoxin or interferon-gamma. J Immunol 139:2635–2640

    CAS  PubMed  Google Scholar 

  • Okusawa S, Yancey KB, van der Meer JW, Endres S, Lonnemann G, Hefter K, Frank MM, Burke JF, Dinarello CA, Gelfand JA (1988) C5a stimulates secretion of tumor necrosis factor from human mononuclear cells in vitro. Comparison with secretion of interleukin 1 beta and interleukin 1 alpha. J Exp Med 168:443–448

    Article  CAS  PubMed  Google Scholar 

  • Olney JW, Ho OL, Rhee V (1971) Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp Brain Res 14:61–76

    Article  CAS  PubMed  Google Scholar 

  • Piani D, Frei K, Do KQ, Cuenod M, Fontana A (1991) Murine brain macrophages induced NMDA receptor mediated neurotoxicity in vitro by secreting glutamate. Neurosci Lett 133:159–162

    Article  CAS  PubMed  Google Scholar 

  • Piehl F, Lundberg C, Khademi M, Bucht A, Dahlman I, Lorentzen JC, Olsson T (1999) Non-MHC gene regulation of nerve root injury induced spinal cord inflammation and neuron death. J Neuroimmunol 101:87–97

    Article  CAS  PubMed  Google Scholar 

  • Popovich PG, Wei P, Stokes BT (1997) Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol 377:443–464

    Article  CAS  PubMed  Google Scholar 

  • Rancan M, Morganti-Kossmann MC, Barnum SR, Saft S, Schmidt OI, Ertel W, Stahel PF (2003) Central nervous system-targeted complement inhibition mediates neuroprotection after closed head injury in transgenic mice. J Cereb Blood Flow Metab 23:1070–1074

    Article  CAS  PubMed  Google Scholar 

  • Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4:814–821

    Article  CAS  PubMed  Google Scholar 

  • Reynolds CW, Sharrow SO, Ortaldo JR, Herberman RB (1981) Natural killer activity in the rat. II. Analysis of surface antigens on LGL by flow cytometry. J Immunol 127:2204–2208

    CAS  PubMed  Google Scholar 

  • Robinson AP, White TM, Mason DW (1986) Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunology 57:239–247

    CAS  PubMed  Google Scholar 

  • Rosen H (1990) Role of CR3 in induced myelomonocytic recruitment: insights from in vivo monoclonal antibody studies in the mouse. J Leukoc Biol 48:465–469

    CAS  PubMed  Google Scholar 

  • Royle SJ, Collins FC, Rupniak HT, Barnes JC, Anderson R (1999) Behavioural analysis and susceptibility to CNS injury of four inbred strains of mice. Brain Res 816:337–349

    Article  CAS  PubMed  Google Scholar 

  • Schauwecker PE, Steward O (1997) Genetic determinants of susceptibility to excitotoxic cell death: implications for gene targeting approaches. Proc Natl Acad Sci USA 94:4103–4108

    Article  CAS  PubMed  Google Scholar 

  • Schindler R, Gelfand JA, Dinarello CA (1990) Recombinant C5a stimulates transcription rather than translation of interleukin-1 (IL-1) and tumor necrosis factor: translational signal provided by lipopolysaccharide or IL-1 itself. Blood 76:1631–1638

    CAS  PubMed  Google Scholar 

  • Schmued LC, Albertson C, Slikker W Jr (1997) Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res 751:37–46

    Article  CAS  PubMed  Google Scholar 

  • Schwartz M (2003) Macrophages and microglia in central nervous system injury: are they helpful or harmful? J Cereb Blood Flow Metab 23:385–394

    Article  PubMed  Google Scholar 

  • Soares HD, Hicks RR, Smith D, McIntosh TK (1995) Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury. J Neurosci 15:8223–8233

    CAS  PubMed  Google Scholar 

  • Stahel PF, Morganti-Kossmann MC, Kossmann T (1998) The role of the complement system in traumatic brain injury. Brain Res Brain Res Rev 27:243–256

    Article  CAS  PubMed  Google Scholar 

  • Stahel PF, Shohami E, Younis FM, Kariya K, Otto VI, Lenzlinger PM, Grosjean MB, Eugster HP, Trentz O, Kossmann T, Morganti-Kossmann MC (2000) Experimental closed head injury: analysis of neurological outcome, blood-brain barrier dysfunction, intracranial neutrophil infiltration, and neuronal cell death in mice deficient in genes for pro-inflammatory cytokines. J Cereb Blood Flow Metab 20:369–380

    Article  CAS  PubMed  Google Scholar 

  • Steward O, Schauwecker PE, Guth L, Zhang Z, Fujiki M, Inman D, Wrathall J, Kempermann G, Gage FH, Saatman KE, Raghupathi R, McIntosh T (1999) Genetic approaches to neurotrauma research: opportunities and potential pitfalls of murine models. Exp Neurol 157:19–42

    Article  CAS  PubMed  Google Scholar 

  • Stoll G, Schmidt B, Jander S, Toyka KV, Hartung HP (1991) Presence of the terminal complement complex (C5b–9) precedes myelin degradation in immune-mediated demyelination of the rat peripheral nervous system. Ann Neurol 30:147–155

    Article  CAS  PubMed  Google Scholar 

  • Sunnemark D, Eltayeb S, Wallstrom E, Appelsved L, Malmberg A, Lassmann H, Ericsson-Dahlstrand A, Piehl F, Olsson T (2003) Differential expression of the chemokine receptors CX3CR1 and CCR1 by microglia and macrophages in myelin-oligodendrocyte-glycoprotein-induced experimental autoimmune encephalomyelitis. Brain Pathol 13:617–629

    CAS  PubMed  Google Scholar 

  • Suzumura A, Sawada M, Yamamoto H, Marunochi T (1990) Effects of colony stimulating factors on isolated microglia in vitro. J Neuroimmunol 30:111–120

    Article  CAS  PubMed  Google Scholar 

  • Svensson M, Aldskogius H (1992) Evidence for activation of the complement cascade in the hypoglossal nucleus following peripheral nerve injury. J Neuroimmunol 40:99–109

    Article  CAS  PubMed  Google Scholar 

  • Svensson M, Liu L, Mattsson P, Morgan BP, Aldskogius H (1995) Evidence for activation of the terminal pathway of complement and upregulation of sulfated glycoprotein (SGP)-2 in the hypoglossal nucleus following peripheral nerve injury. Mol Chem Neuropathol 24:53–68

    Article  CAS  PubMed  Google Scholar 

  • Swanberg M, Lidman O, Padyukov L, Eriksson P, Akesson E, Jagodic M, Lobell A, Khademi M, Borjesson O, Lindgren CM, Lundman P, Brookes AJ, Kere J, Luthman H, Alfredsson L, Hillert J, Klareskog L, Hamsten A, Piehl F, Olsson T (2005) MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat Genet 37:486–494

    Article  CAS  PubMed  Google Scholar 

  • Teasdale GM, Nicoll JA, Murray G, Fiddes M (1997) Association of apolipoprotein E polymorphism with outcome after head injury. Lancet 350:1069–1071

    Article  CAS  PubMed  Google Scholar 

  • Théry C, Chamak B, Mallat M (1991) Cytotoxic effect of brain macrophages on developing neurons. Eur J Neurosci 3:1155–1164

    Article  PubMed  Google Scholar 

  • Vaca K, Wendt E (1992) Divergent effects of astroglial and microglial secretions on neuron growth and survival. Exp Neurol 118:62–72

    Article  CAS  PubMed  Google Scholar 

  • Vanguri P, Shin ML (1988) Hydrolysis of myelin basic protein in human myelin by terminal complement complexes. J Biol Chem 263:7228–7234

    CAS  PubMed  Google Scholar 

  • Weissert R, Wallstrom E, Storch MK, Stefferl A, Lorentzen J, Lassmann H, Linington C, Olsson T (1998) MHC haplotype-dependent regulation of MOG-induced EAE in rats. J Clin Invest 102:1265–1273

    Article  CAS  PubMed  Google Scholar 

  • Wekerle H, Sun D, Oropeza-Wekerle RL, Meyermann R (1987) Immune reactivity in the nervous system: modulation of T-lymphocyte activation by glial cells. J Exp Biol 132:43–57

    CAS  PubMed  Google Scholar 

  • Wetsel RA (1995) Structure, function and cellular expression of complement anaphylatoxin receptors. Curr Opin Immunol 7:48–53

    Article  CAS  PubMed  Google Scholar 

  • Williams AF, Galfre G, Milstein C (1977) Analysis of cell surfaces by xenogeneic myeloma-hybrid antibodies: differentiation antigens of rat lymphocytes. Cell 12:663–673

    Article  CAS  PubMed  Google Scholar 

  • Witgen BM, Lifshitz J, Grady MS (2006) Inbred mouse strains as a tool to analyze hippocampal neuronal loss after brain injury: a stereological study. J Neurotrauma 23:1320–1329

    Article  PubMed  Google Scholar 

  • Yao J, Harvath L, Gilbert DL, Colton CA (1990) Chemotaxis by a CNS macrophage, the microglia. J Neurosci Res 27:36–42

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by 6th Framework Program of the European Union; NeuroproMiSe, LSHM-CT-2005-018637 and the EURATools, LSHG-CT-2005-019015; as well as by grants from the Wadsworth Foundation, Torsten and Ragnar Söderberg’s Foundation, Björklund’s Foundation, Nils and Bibbi Jenssen’s Foundation, Montel Williams Foundation, Magn.

Bergvall’s Foundation, the Swedish Society for Medical Research, the Swedish Research Council, and the Swedish Association of Persons with Neurologically Disabilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Michael Bellander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellander, BM., Lidman, O., Ohlsson, M. et al. Genetic regulation of microglia activation, complement expression, and neurodegeneration in a rat model of traumatic brain injury. Exp Brain Res 205, 103–114 (2010). https://doi.org/10.1007/s00221-010-2342-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2342-z

Keywords

Navigation