Skip to main content
Log in

Multiple reference frames used by the human brain for spatial perception and memory

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We review human functional neuroimaging studies that have explicitly investigated the reference frames used in different cortical regions for representing spatial locations of objects. Beyond the general distinction between “egocentric” and “allocentric” reference frames, we provide evidence for the selective involvement of the posterior parietal cortex and associated frontal regions in the specific process of egocentric localization of visual and somatosensory stimuli with respect to relevant body parts (“body referencing”). Similarly, parahippocampal and retrosplenial regions, together with specific parietal subregions such as the precuneus, are selectively involved in a specific form of allocentric representation in which object locations are encoded relative to enduring spatial features of a familiar environment (“environmental referencing”). We also present a novel functional magnetic resonance imaging study showing that these regions are selectively activated, whenever a purely perceptual spatial task involves an object which maintains a stable location in space during the whole experiment, irrespective of its perceptual features and its orienting value as a landmark. This effect can be dissociated from the consequences of an explicit memory recall of landmark locations, a process that further engages the retrosplenial cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguirre GK, D’Esposito M (1997) Environmental knowledge is subserved by separable dorsal/ventral neural areas. J Neurosci 17:2512–2518

    CAS  PubMed  Google Scholar 

  • Aguirre GK, D’Esposito M (1999) Topographical disorientation: a synthesis and taxonomy. Brain 122:1613–1628

    Article  PubMed  Google Scholar 

  • Aguirre GK, Detre JA, Alsop DC, D’Esposito M (1996) The parahippocampus subserves topographical learning in man. Cereb Cortex 6:823–829

    Article  CAS  PubMed  Google Scholar 

  • Aguirre GK, Zarahn E, D’Esposito M (1998) An area within human ventral cortex sensitive to ‘‘building’’ stimuli: evidence and implications. Neuron 21:373–383

    Article  CAS  PubMed  Google Scholar 

  • Amorim MA, Glasauer S, Corpinot K, Berthoz A (1997) Updating an object’s orientation and location during nonvisual navigation: a comparison between two processing modes. Percept Psychophys 59:404–418

    CAS  PubMed  Google Scholar 

  • Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456–458

    Article  CAS  PubMed  Google Scholar 

  • Andresen DR, Vinberg J, Grill-Spector K (2009) The representation of object viewpoint in human visual cortex. Neuroimage 45(2):522–536

    Article  PubMed  Google Scholar 

  • Avidan G, Levy I, Hendler T, Zohary E, Malach R (2003) Spatial vs. object specific attention in high-order visual areas. Neuroimage 19:308–318

    Article  PubMed  Google Scholar 

  • Bennequin D, Fuchs R, Berthoz A, Flash T (2009) Movement timing and invariance arise from several geometries. PLoS Comput Biol 5:e1000426

    Article  PubMed  CAS  Google Scholar 

  • Bennett ADT (1996) Do animals have cognitive maps? J Exp Biol 199:219–224

    CAS  PubMed  Google Scholar 

  • Berthoz A (1997) Parietal and hippocampal contribution to topokinetic and topographic memory. Philos Trans R Soc Lond B Biol Sci 352:1437–1448

    Article  CAS  PubMed  Google Scholar 

  • Biegler R, Morris RGM (1993) Landmark stability is a prerequisite for spatial but not discrimination-learning. Nature 361:631–633

    Article  CAS  PubMed  Google Scholar 

  • Bisiach E (1997) The spatial features of unilateral neglect. In: Thier P, Karnath H-O (ed) Parietal lobe contributions to orientation in 3D space. Springer, Heidelberg, pp 465–495

  • Brotchie PR, Lee MB, Chen DY, Lourensz M, Jackson G, Bradley WG Jr (2003) Head position modulates activity in the human parietal eye fields. Neuroimage 18:178–184

    Article  PubMed  Google Scholar 

  • Burgess N (2006) Spatial memory: how egocentric and allocentric combine. Trends Cogn Sci 10:551–557

    Article  PubMed  Google Scholar 

  • Burgess N (2008) Spatial cognition and the brain. Ann N Y Acad Sci 1124:77–97

    Article  PubMed  Google Scholar 

  • Chen LL, Lin LH, Green EJ, Barnes CA, McNaughton BL (1994) Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp Brain Res 101:8–23

    Article  CAS  PubMed  Google Scholar 

  • Chokron S (2003) Right parietal lesions, unilateral spatial neglect, and the egocentric frame of reference. Neuroimage 20:S75–S81

    Article  PubMed  Google Scholar 

  • Cohen YE, Andersen RA (2002) A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci 3:553–562

    Article  CAS  PubMed  Google Scholar 

  • Committeri G, Galati G, Paradis AL, Pizzamiglio L, Berthoz A, LeBihan D (2004) Reference frames for spatial cognition: different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. J Cogn Neurosci 16:1517–1535

    Article  PubMed  Google Scholar 

  • Committeri G, Pitzalis S, Galati G, Patria F, Pelle G, Sabatini U, Castriota-Scanderbeg A, Piccardi L, Guariglia C, Pizzamiglio L (2007) Neural bases of personal and extrapersonal neglect in humans. Brain 130:431–441

    Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Kincade MJ, Lewis C, Snyder AZ, Sapir A (2005) Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci 8:1603–1610

    Article  CAS  PubMed  Google Scholar 

  • Critchley M (1953) The parietal lobes. Hafner Press, New York

    Google Scholar 

  • d’Avossa G, Tosetti M, Crespi S, Biagi L, Burr DC, Morrone MC (2007) Spatiotopic selectivity of BOLD responses to visual motion in human area MT. Nat Neurosci 10:249–255

    Article  PubMed  CAS  Google Scholar 

  • DeSouza JF, Dukelow SP, Gati JS, Menon RS, Andersen RA, Vilis T (2000) Eye position signal modulates a human parietal pointing region during memory-guided movements. J Neurosci 20:5835–5840

    CAS  PubMed  Google Scholar 

  • DeSouza JF, Dukelow SP, Vilis T (2002) Eye position signals modulate early dorsal and ventral visual areas. Cereb Cortex 12:991–997

    Article  PubMed  Google Scholar 

  • Driver J (1999) Egocentric and object-based visual neglect. In: Burgess N, Jeffery KJ, O’Keefe J (eds) The hippocampal and parietal foundations of spatial cognition. Oxford University Press, Oxford, pp 67–89

    Google Scholar 

  • Duhamel J-R, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92

    Article  CAS  PubMed  Google Scholar 

  • Duhamel J-R, Bremmer F, Ben Hamed S, Graf W (1997) Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389:845–848

    Google Scholar 

  • Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I (2003) Cellular networks underlying human spatial navigation. Nature 425:184–188

    Article  CAS  PubMed  Google Scholar 

  • Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, Shadlen MN (1994) fMRI of human visual cortex. Nature 369:525

    Article  CAS  PubMed  Google Scholar 

  • Epstein RA, Higgins JS (2007) Differential parahippocampal and retrosplenial involvement in three types of visual scene recognition. Cereb Cortex 17:1680–1693

    Article  PubMed  Google Scholar 

  • Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392:598–601

    Article  CAS  PubMed  Google Scholar 

  • Epstein RA, Harris A, Stanley D, Kanwisher N (1999) The parahippocampal place area: recognition, navigation, or encoding? Neuron 23:115–125

    Article  CAS  PubMed  Google Scholar 

  • Epstein RA, Parker WE, Feiler AM (2007) Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J Neurosci 27:6141–6149

    Article  CAS  PubMed  Google Scholar 

  • Fink GR, Dolan RJ, Halligan PW, Marshall JC, Frith CD (1997) Space-based and object-based visual attention: shared and specific neural domains. Brain 120:2013–2028

    Article  PubMed  Google Scholar 

  • Fink GR, Marshall JC, Shah NJ, Weiss PH, Halligan PW, Grosse-Ruyken M, Ziemons K, Zilles K, Freund HJ (2000) Line bisection judgements implicate right parietal cortex and cerebellum as assessed by fMRI. Neurology 54:1324–1331

    CAS  PubMed  Google Scholar 

  • Fink GR, Marshall JC, Weiss PH, Stephan T, Grefkes C, Shah NJ, Zilles K, Dieterich M (2003) Performing allocentric visuospatial judgments with induced distortion of the egocentric reference frame: an fMRI study with clinical implications. Neuroimage 20:1505–1517

    Article  PubMed  Google Scholar 

  • Fletcher PC, Frith CD, Baker SC, Shallice T, Frackowiak RSJ, Dolan RJ (1995) The mind’s eye: precuneus activation in memory-related imagery. Neuroimage 2:195–200

    Article  CAS  PubMed  Google Scholar 

  • Galati G, Lobel E, Berthoz A, Pizzamiglio L, Le Bihan D, Vallar G (2000) The neural basis of egocentric and allocentric coding of space in humans: a functional magnetic resonance study. Exp Brain Res 133:156–164

    Article  CAS  PubMed  Google Scholar 

  • Galati G, Committeri G, Sanes JN, Pizzamiglio L (2001) Spatial coding of visual and somatic sensory information in body-centered coordinates. E J Neurosci 14:737–746

    Article  CAS  Google Scholar 

  • Gardner JL, Merriam EP, Movshon JA, Heeger DJ (2008) Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. J Neurosci 28:3988–3999

    Article  CAS  PubMed  Google Scholar 

  • Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 2002:870–878

    Article  Google Scholar 

  • Ghaem O, Mellet E, Crivello F, Tzourio N, Mazoyer B, Berthoz A, Denis M (1997) Mental navigation along memorized routes activates the hippocampus, precuneus and insula. NeuroReport 8:739–744

    Article  CAS  PubMed  Google Scholar 

  • Habib M, Sirigu A (1987) Pure topographical disorientation: a definition and anatomical basis. Cortex 23:73–85

    CAS  PubMed  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    Article  CAS  PubMed  Google Scholar 

  • Hartley T, Maguire EA, Spiers HJ, Burgess N (2003) The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37:877–888

    Article  CAS  PubMed  Google Scholar 

  • Hasson U, Harel M, Levy I, Malach R (2003) Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron 37:1027–1041

    Article  CAS  PubMed  Google Scholar 

  • Head H, Holmes G (1911) Sensory disturbances from cerebral lesions. Brain 34:102–254

    Article  Google Scholar 

  • Hillis AE, Rapp B (1998) Unilateral spatial neglect in dissociable frames of reference: a comment on Farah, Brunn, Wong, Wallace, and Carpenter (1990) Neuropsychologia 36:1257–1262

  • Honda M, Wise SP, Weeks RA, Deiber M-P, Hallett M (1998) Cortical areas with enhanced activation during object-centred spatial information processing. Brain 121:2145–2158

    Article  PubMed  Google Scholar 

  • Iaria G, Petrides M, Dagher A, Pike B, Bohbot VD (2003) Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. J Neurosci 23:5945–5952

    Google Scholar 

  • Iaria G, Chen JK, Guariglia C, Ptito A, Petrides M (2007) Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps. Eur J Neurosci 25:890–899

    Article  PubMed  Google Scholar 

  • Iglói K, Zaoui M, Berthoz A, Rondi-Reig L (2009) Sequential egocentric strategy is acquired as early as allocentric strategy: parallel acquisition of these two navigation strategies. Hippocampus 19:1199–1211

    Article  PubMed  Google Scholar 

  • Janzen G (2006) Memory for object location and route direction in virtual large-scale space. Q J Exp Psychol 59:493–508

    Article  Google Scholar 

  • Janzen G, van Turennout M (2004) Selective neural representation of objects relevant for navigation. Nat Neurosci 7:673–677

    Article  CAS  PubMed  Google Scholar 

  • Karnath HO (1997) Neural encoding of space in egocentric coordinates? In: Thier P, Karnath H-O (eds) Parietal lobe contributions to orientation in 3D space. Springer, Heidelberg, pp 497–520

    Google Scholar 

  • Karnath H-O, Christ K, Hartje W (1993) Decrease of contralateral neglect by neck muscle vibration and spatial orientation of trunk midline. Brain 116:383–396

    Article  PubMed  Google Scholar 

  • Kerkhoff G, Schindler I, Artinger F, Zoelch C, Bublak P, Finke K (2006) Rotation or translation of auditory space in neglect? A case study of chronic right-sided neglect. Neuropsychology 44:923–930

    Article  Google Scholar 

  • King JA, Burgess N, Hartley T, Vargha-Khadem F, O’Keefe J (2002) Human hippocampus and viewpoint dependence in spatial memory. Hippocampus 12:811–820

    Google Scholar 

  • Kosslyn SM (1987) Seeing and imagining in the cerebral hemispheres: a computational approach. Psychol Rev 94:148–175

    Article  CAS  PubMed  Google Scholar 

  • Kovács G, Raabe M, Greenlee MW (2008) Neural correlates of visually induced self-motion illusion in depth. Cereb Cortex 18:1779–1787

    Article  PubMed  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679

    Article  CAS  PubMed  Google Scholar 

  • Lafon M, Vidal M, Berthoz A (2009) Selective influence of prior allocentric knowledge on the kinesthetic learning of a path. Exp Brain Res 194:541–552

    Article  PubMed  Google Scholar 

  • Lambrey S, Amorim MA, Samson S, Noulhiane M, Hasboun D, Dupont S, Baulac M, Berthoz A (2008) Distinct visual perspective-taking strategies involve the left and right medial temporal lobe structures differently. Brain 131:523–534

    Article  CAS  PubMed  Google Scholar 

  • Landgraf S, Krebs MO, Olié JP, Committeri G, van der Meer E, Berthoz A, Amado I Real world referencing and schizophrenia: are we experiencing the same reality? Schizophr Bull (submitted)

  • Maguire EA, Frackowiak RSJ, Frith CD (1997) Recalling routes around London: activation of the right hippocampus in taxi drivers. J Neurosci 17:7103–7110

    CAS  PubMed  Google Scholar 

  • Maguire EA, Burgess N, Donnett JG, Frackowiak RS, Frith CD, O’Keefe J (1998a) Knowing where and getting there: a human navigation network. Science 280:921–924

    Article  CAS  PubMed  Google Scholar 

  • Maguire EA, Frith CD, Burgess N, Donnett JG, O’Keefe J (1998b) Knowing where things are: parahippocampal involvement in encoding object locations in virtual large-scale space. J Cogn Neurosci 10:61–76

    Article  CAS  PubMed  Google Scholar 

  • McCloskey M (2001) Spatial representation in mind and brain. In: Rapp Brenda (ed) The handbook of cognitive neuropsychology: what deficits reveal about the human mind. Psychology Press, Philadelphia

    Google Scholar 

  • Medendorp WP, Goltz HC, Vilis T, Crawford JD (2003) Gaze-centered updating of visual space in human parietal cortex. J Neurosci 23:1624–6209

    Google Scholar 

  • Medendorp WP, Goltz HC, Vilis T (2005) Remapping the remembered target location for anti-saccades in human posterior parietal cortex. J Neurophysiol 94:734–740

    Article  PubMed  Google Scholar 

  • Medina J, Kannan V, Pawlak MA, Kleinman JT, Newhart M, Davis C, Heidler-Gary JE, Herskovits EH, Hillis AE (2009) Neural substrates of visuospatial processing in distinct reference frames: evidence from unilateral spatial neglect. J Cogn Neurosci 21:2073–2084

    Article  PubMed  Google Scholar 

  • Mellet E, Briscogne S, Tzourio-Mazoyer N, Ghaem O, Petit L, Zago L, Etard O, Berthoz A, Mazoyer B, Denis M (2000) Neural correlates of topographic mental exploration: the impact of route versus survey perspective learning. Neuroimage 12:588–600

    Article  CAS  PubMed  Google Scholar 

  • Merriam EP, Genovese CR, Colby CL (2003) Spatial updating in human parietal cortex. Neuron 39:361–373

    Article  CAS  PubMed  Google Scholar 

  • Merriam EP, Genovese CR, Colby CL (2007) Remapping in human visual cortex. J Neurophysiol 97:1738–1755

    Article  PubMed  Google Scholar 

  • Milner AD, Goodale MA (1995) The visual brain in action. Oxford University Press, Oxford

    Google Scholar 

  • Murphy JS, Wynne CE, O’Rourke EM, Commins S, Roche RA (2009) High-resolution ERP mapping of cortical activation related to implicit object-location memory. Biol Psychol 82:234–245

    Google Scholar 

  • Neggers SF, Van der Lubbe RH, Ramsey NF, Postma A (2006) Interactions between ego- and allocentric neuronal representations of space. Neuroimage 31:320–331

    Article  CAS  PubMed  Google Scholar 

  • O’Craven KM, Downing PE, Kanwisher N (1999) fMRI evidence for objects as the units of attentional selection. Nature 401:584–587

    Article  PubMed  Google Scholar 

  • O’Keefe J (1976) Place units in the hippocampus of the freely moving rat. Exp Neurol 51:78–109

    Article  PubMed  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon, Oxford

    Google Scholar 

  • Olson CR (2003) Brain representation of object-centered space in monkeys and humans. Annu Rev Neurosci 26:331–354

    Article  CAS  PubMed  Google Scholar 

  • Ono T, Tamura R, Nakamura K (1991) The hippocampus and space: are there “place neurons” in the monkey hippocampus? Hippocampus 1:253–257

    Article  CAS  PubMed  Google Scholar 

  • Park S, Chun MM (2009) Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception. Neuroimage 47:1747–1756

    Article  PubMed  Google Scholar 

  • Patchay S, Haggard P, Castiello U (2006) An object-centred reference frame for control of grasping: effects of grasping a distractor object on visuomotor control. Exp Brain Res 2170:532–542

    Article  Google Scholar 

  • Pizzamiglio L, Committeri G, Galati G, Patria F (2000) Psychophysical properties of line bisection and body midline perception in unilateral neglect. Cortex 36:469–484

    Article  CAS  PubMed  Google Scholar 

  • Richard C, Rousseaux M, Saj A, Honoré J (2004) Straight ahead in spatial neglect: evidence that space is shifted, not rotated. Neurology 63:2136–2138

    PubMed  Google Scholar 

  • Rolls ET (1999) Spatial view cells and the representation of place in the primate hippocampus. Hippocampus 9:467–480

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum RS, Ziegler M, Winocur G, Grady CL, Moscovitch M (2004) “I have often walked down this street before”: fMRI studies on the hippocampus and other structures during mental navigation of an old environment. Hippocampus 14:826–835

    Article  PubMed  Google Scholar 

  • Saj A, Honoré J, Richard C, Coello Y, Bernati T, Rousseaux M (2006) Where is the “straight ahead” in spatial neglect? Neurology 67:1500–1503

    Article  CAS  PubMed  Google Scholar 

  • Schmidt D, Krause BJ, Weiss PH, Fink GR, Shah NJ, Amorim MA, Müller HW, Berthoz A (2007) Visuospatial working memory and changes of the point of view in 3D space. Neuroimage 36:955–968

    Article  CAS  PubMed  Google Scholar 

  • Sepe R, Trojano L, Committeri G, Grossi D, Romani GL, Galati G (2007) On the relationship between categorical/coordinate and egocentric/allocentric spatial representations. In: Grainger J, Alario F-X, Burle B, Janssen N (eds) Proceedings of the fifteenth meeting of the European society for cognitive psychology. ESCoP, Marseille, pp 101

  • Sereno MI, Huang R-S (2006) A human parietal face area contains aligned head-centered visual and tactile maps. Nat Neurosci 9:1337–1343

    Article  CAS  PubMed  Google Scholar 

  • Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893

    Article  CAS  PubMed  Google Scholar 

  • Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354

    Article  CAS  PubMed  Google Scholar 

  • Shildler P (1935) The image and appearance of the human body. Routledge, London

    Google Scholar 

  • Shirani P, Thorn J, Davis C, Heidler-Gary J, Newhart M, Gottesman RF, Hillis AE (2009) Severity of hypoperfusion in distinct brain regions predicts severity of hemispatial neglect in different reference frames. Stroke 40:3563–3566

    Article  PubMed  Google Scholar 

  • Silver MA, Kastner S (2009) Topographic maps in human frontal and parietal cortex. Trends Cogn Sci 13:488–495

    Article  PubMed  Google Scholar 

  • Smania N, Aglioti S (1995) Sensory and spatial components of somaesthetic deficits following right brain damage. Neurology 45:1725–1730

    CAS  PubMed  Google Scholar 

  • Sugiura M, Shah NJ, Zilles K, Fink GR (2005) Cortical representation of personally familiar objects and places: functional organization of the human posterior cingulate cortex. J Cogn Neurosci 17:183–198

    Article  PubMed  Google Scholar 

  • Sulpizio V, Committeri G, Lambrey S, Zaoui M, Berthoz A, Galati G (2009) Human cortical regions encoding spatial locations in the environment across viewpoint changes. Society for Neuroscience Abstract 380.2/FF100. Chicago, October 17–21

  • Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC (2007) Visual topography of human intraparietal sulcus. J Neurosci 27:5326–5337

    Article  CAS  PubMed  Google Scholar 

  • Tabareau N, Bennequin D, Berthoz A, Slotine JJ, Girard B (2007) Geometry of the superior colliculus mapping and efficient oculomotor computation. Biol Cybern 97:279–292

    Article  PubMed  Google Scholar 

  • Taube JS (1998) Head direction cells and the neuropsychological basis for a sense of direction. Prog Neurobiol 55:225–256

    Article  CAS  PubMed  Google Scholar 

  • Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208

    Article  CAS  PubMed  Google Scholar 

  • Trullier O, Wiener SI, Berthoz A, Meyer JA (1997) Biologically based artificial navigation systems: review and prospects. Prog Neurobiol 51:483–544

    Article  CAS  PubMed  Google Scholar 

  • Vallar G, Guariglia C, Nico D, Bisiach E (1995) Spatial hemineglect in back space. Brain 118:467–472

    Article  PubMed  Google Scholar 

  • Vallar G, Guariglia C, Rusconi ML (1997) Modulation of the neglect syndrome by sensory stimulation. In: Thier P, Karnath H-O (eds) Parietal lobe contributions to orientation in 3D space. Springer, Heidelberg, pp 555–578

    Google Scholar 

  • Vallar G, Lobel E, Galati G, Berthoz A, Pizzamiglio L, Le Bihan D (1999) A fronto-parietal system for computing the egocentric spatial frame of reference in humans. Exp Brain Res 124:281–286

    Article  CAS  PubMed  Google Scholar 

  • Waller D, Hodgson E (2006) Transient and enduring spatial representations under disorientation and selfrotation. J Exp Psychol Learn Mem Cogn 32:867–882

    Article  PubMed  Google Scholar 

  • Wang R, Spelke E (2002) Human spatial representation: insights from animals. Trends Cogn Sci 6:376

    Article  PubMed  Google Scholar 

  • Wolbers T, Büchel C (2005) Dissociable retrosplenial and hippocampal contributions to successful formation of survey representations. J Neurosci 25:3333–3340

    Article  CAS  PubMed  Google Scholar 

  • Wolbers T, Hegarty M, Buüchel C, Loomis JM (2008) Spatial updating: how the brain keeps track of changing object locations during observer motion. Nat Neurosci 11:1223–1230

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaspare Galati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galati, G., Pelle, G., Berthoz, A. et al. Multiple reference frames used by the human brain for spatial perception and memory. Exp Brain Res 206, 109–120 (2010). https://doi.org/10.1007/s00221-010-2168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2168-8

Keywords

Navigation