Skip to main content

Advertisement

Log in

Optimal integration of visual and proprioceptive movement information for the perception of trajectory geometry

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Many studies demonstrated a higher accuracy in perception and action when using more than one sense. The maximum-likelihood estimation (MLE) model offers a recent approach on how perceptual information is integrated across different sensory modalities suggesting statistically optimal integration. The purpose of the present study was to investigate how visual and proprioceptive movement information is integrated for the perception of trajectory geometry. To test this, participants sat in front of an apparatus that moved a handle along a horizontal plane. Participants had to decide whether two consecutive trajectories formed an acute or an obtuse movement path. Judgments had to be based on information from a single modality alone, i.e., vision or proprioception, or on the combined information of both modalities. We estimated both the bias and variance for each single modality condition and predicted these parameters for the bimodal condition using the MLE model. Consistent with previous findings, variability decreased for perceptual judgments about trajectory geometry based on combined visual-proprioceptive information. Furthermore, the observed bimodal data corresponded well to the predicted parameters. Our results suggest that visual and proprioceptive movement information for the perception of trajectory geometry is integrated in a statistically optimal manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alais D, Burr D (2004a) No direction-specific bimodal facilitation for audiovisual motion detection. Brain Res Cogn Brain Res 19:185–194

    Article  PubMed  Google Scholar 

  • Alais D, Burr D (2004b) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14:257–262

    CAS  PubMed  Google Scholar 

  • Alink A, Singer W, Muckli L (2008) Capture of auditory motion by vision is represented by an activation shift from auditory to visual motion cortex. J Neurosci 28:2690–2697

    Article  CAS  PubMed  Google Scholar 

  • Amedi A, von Kriegstein K, van Atteveldt NM, Beauchamp MS, Naumer MJ (2005) Functional imaging of human crossmodal identification and object recognition. Exp Brain Res 166:559–571

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp MS, Lee KE, Argall BD, Martin A (2004) Integration of auditory and visual information about objects in superior temporal sulcus. Neuron 41:809–823

    Article  CAS  PubMed  Google Scholar 

  • Blake R, Sobel KV, James TW (2004) Neural synergy between kinetic vision and touch. Psychol Sci 15:397–402

    Article  PubMed  Google Scholar 

  • Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29:287–296

    Article  CAS  PubMed  Google Scholar 

  • Calvert GA, Hansen PC, Iversen SD, Brammer MJ (2001) Detection of audio–visual integration sites in humans by application of electrophysiological criteria to the BOLD effect. Neuroimage 14:427–438

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Levi DM (1996) Angle judgement: is the whole the sum of its parts? Vision Res 36:1721–1735

    Article  CAS  PubMed  Google Scholar 

  • Drewing K, Ernst MO (2006) Integration of force and position cues for shape perception through active touch. Brain Res 1078:92–100

    Article  CAS  PubMed  Google Scholar 

  • Drewing K, Wiecki TV, Ernst MO (2008) Material properties determine how force and position signals combine in haptic shape perception. Acta Psychol (Amst) 128:264–273

    Article  Google Scholar 

  • Duhamel JR, Colby CL, Goldberg ME (1998) Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol 79:126–136

    CAS  PubMed  Google Scholar 

  • Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433

    Article  CAS  PubMed  Google Scholar 

  • Ernst MO, Bülthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8:162–169

    Article  PubMed  Google Scholar 

  • Fiehler K, Burke M, Engel A, Bien S, Rösler F (2008) Kinesthetic working memory and action control within the dorsal stream. Cereb Cortex 18:243–253

    Article  PubMed  Google Scholar 

  • Fisher NI (1993) Statistical Analysis of Circular Data. Cambridge University Press, Cambridge

    Google Scholar 

  • Gepshtein S, Banks MS (2003) Viewing geometry determines how vision and haptics combine in size perception. Curr Biol 13:483–488

    Article  CAS  PubMed  Google Scholar 

  • Gepshtein S, Burge J, Ernst MO, Banks MS (2005) The combination of vision and touch depends on spatial proximity. J Vis 5:1013–1023

    Article  PubMed  Google Scholar 

  • Gobbelé R, Schürmann M, Forss N, Juottonen K, Buchner H, Hari R (2003) Activation of the human posterior parietal and temporoparietal cortices during audiotactile interaction. Neuroimage 20:503–511

    Article  PubMed  Google Scholar 

  • Gondan M, Niederhaus B, Rösler F, Röder B (2005) Multisensory processing in the redundant-target effect: a behavioral and event-related potential study. Percept Psychophys 67:713–726

    PubMed  Google Scholar 

  • Grefkes C, Fink GR (2005) The functional organization of the intraparietal sulcus in humans and monkeys. J Anat 207:3–17

    Article  PubMed  Google Scholar 

  • Gu Y, Angelaki DE, DeAngelis GC (2008) Neural correlates of multisensory cue integration in macaque MSTd. Nat Neurosci 11:1201–1210

    Article  CAS  PubMed  Google Scholar 

  • Helbig HB, Ernst MO (2007) Optimal integration of shape information from vision and touch. Exp Brain Res 179:595–606

    Article  PubMed  Google Scholar 

  • Helbig HB, Ernst MO (2008) Visual-haptic cue weighting is independent of modality-specific attention. J Vis 8:21.1–21.6

    Article  Google Scholar 

  • Hillis JM, Watt SJ, Landy MS, Banks MS (2004) Slant from texture and disparity cues: optimal cue combination. J Vis 4:967–992

    Article  PubMed  Google Scholar 

  • Jammalamadaka SR, Sengupta A (2001) Topics in circular statistics. World Scientific Press, Singapore

    Google Scholar 

  • Kennedy GJ, Orbach HS, Loffler G (2006) Effects of global shape on angle discrimination. Vision Res 46:1530–1539

    Article  PubMed  Google Scholar 

  • Kesten H (1958) Accelerated stochastic approximation. Ann Math Stat 29:41–59

    Article  Google Scholar 

  • Knill DC, Saunders JA (2003) Do humans optimally integrate stereo and texture information for judgments of surface slant? Vision Res 43:2539–2558

    Article  PubMed  Google Scholar 

  • Lakatos S, Marks LE (1998) Haptic underestimation of angular extent. Perception 27:737–754

    Article  CAS  PubMed  Google Scholar 

  • Landy MS, Maloney LT, Johnston EB, Young M (1995) Measurement and modeling of depth cue combination: in defense of weak fusion. Vision Res 35:389–412

    Article  CAS  PubMed  Google Scholar 

  • Macaluso E, Driver J, Frith CD (2003) Multimodal spatial representations engaged in human parietal cortex during both saccadic and manual spatial orienting. Curr Biol 13:990–999

    Article  CAS  PubMed  Google Scholar 

  • Martuzzi R, Murray MM, Michel CM, Thiran JP, Maeder PP, Clarke S, Meuli RA (2007) Multisensory interactions within human primary cortices revealed by BOLD dynamics. Cereb Cortex 17:1672–1679

    Article  PubMed  Google Scholar 

  • Meyer GF, Wuerger SM, Röhrbein F, Zetzsche C (2005) Low-level integration of auditory and visual motion signals requires spatial co-localisation. Exp Brain Res 166:538–547

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Regan D, Gray R, Hamstra SJ (1996) Evidence for a neural mechanism that encodes angles. Vision Res 36:323–330

    Article  CAS  PubMed  Google Scholar 

  • Ricciardi E, Bonino D, Gentili C, Sani L, Pietrini P, Vecchi T (2006) Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes. Neuroscience 139:339–349

    Article  CAS  PubMed  Google Scholar 

  • Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Stat 22:400–407

    Article  Google Scholar 

  • Rosas P, Wagemans J, Ernst MO, Wichmann FA (2005) Texture and haptic cues in slant discrimination: reliability-based cue weighting without statistically optimal cue combination. J Opt Soc Am A Opt Image Sci Vis 22:801–809

    Article  PubMed  Google Scholar 

  • Sambo CF, Forster B (2008) An ERP investigation on visuotactile interactions in peripersonal and extrapersonal space: evidence for the spatial rule. J Cogn Neurosci 21:1550–1559

    Article  Google Scholar 

  • Schlack A, Sterbing-D’Angelo SJ, Hartung K, Hoffmann KP, Bremmer F (2005) Multisensory space representations in the macaque ventral intraparietal area. J Neurosci 25:4616–4625

    Article  CAS  PubMed  Google Scholar 

  • Stein BE, Meredith MA (1993) The merging of the senses. MIT Press, Cambridge

    Google Scholar 

  • Treutwein B (1995) Adaptive psychophysical procedures. Vision Res 35:2503–2522

    CAS  PubMed  Google Scholar 

  • van Beers RJ, Sittig AC, van der Denier Gon JJ (1996) How humans combine simultaneous proprioceptive and visual position information. Exp Brain Res 111:253–261

    Article  PubMed  Google Scholar 

  • van Beers RJ, Sittig AC, van der Denier Gon JJ (1999) Integration of proprioceptive and visual position-information: an experimentally supported model. J Neurophysiol 81:1355–1364

    PubMed  Google Scholar 

  • van Beers RJ, Wolpert DM, Haggard P (2002) When feeling is more important than seeing in sensorimotor adaptation. Curr Biol 12:834–837

    Article  PubMed  Google Scholar 

  • Voisin J, Lamarre I, Chapman CE (2002) Haptic discrimination of object shape in humans: contribution of cutanous and proprioceptive inputs. Exp Brain Res 145:251–260

    Article  PubMed  Google Scholar 

  • Wichmann FA, Hill NJ (2001) The psychometric function: I. Fitting, sampling, and goodness of fit. Percept Psychophys 63:1293–1313

    CAS  PubMed  Google Scholar 

  • Wuerger SM, Hofbauer M, Meyer GF (2003) The integration of auditory and visual motion signals at threshold. Percept Psychophys 65:1188–1196

    CAS  PubMed  Google Scholar 

  • Yuille AL, Bülthoff HH (1996) Bayesian theory and psychophysics. In: Knill D, Richards W (eds) Perception as Bayesian inference. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

This research was supported by grant Fi 1567 from the German Research Foundation (DFG) assigned to Katja Fiehler and Frank Rösler, by the research unit DFG/FOR 560 ‘Perception and Action’ and by the TransCoop-Program from the Alexander von Humboldt Foundation assigned to Katja Fiehler and Denise Y.P. Henriques. We thank Stefan Westermann and Oguz Balandi for programming the experiment and Iseult Beets for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johanna Reuschel or Katja Fiehler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuschel, J., Drewing, K., Henriques, D.Y.P. et al. Optimal integration of visual and proprioceptive movement information for the perception of trajectory geometry. Exp Brain Res 201, 853–862 (2010). https://doi.org/10.1007/s00221-009-2099-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-2099-4

Keywords

Navigation