Skip to main content

Advertisement

Log in

Visual selectivity for heading in monkey area MST

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The control of self-motion is supported by visual, vestibular, and proprioceptive signals. Recent research has shown how these signals interact in the monkey medio-superior temporal area (area MST) to enhance and disambiguate the perception of heading during self-motion. Area MST is a central stage for self-motion processing from optic flow, and integrates flow field information with vestibular self-motion and extraretinal eye movement information. Such multimodal cue integration is clearly important to solidify perception. However to understand the information processing capabilities of the brain, one must also ask how much information can be deduced from a single cue alone. This is particularly pertinent for optic flow, where controversies over its usefulness for self-motion control have existed ever since Gibson proposed his direct approach to ecological perception. In our study, we therefore, tested macaque MST neurons for their heading selectivity in highly complex flow fields based on the purely visual mechanisms. We recorded responses of MST neurons to simple radial flow fields and to distorted flow fields that simulated a self-motion plus an eye movement. About half of the cells compensated for such distortion and kept the same heading selectivity in both cases. Our results strongly support the notion of an involvement of area MST in the computation of heading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beintema JA, Van den Berg AV (1998) Heading detection using motion templates and eye velocity gain fields. Vision Res 38:2155–2179

    Article  CAS  PubMed  Google Scholar 

  • Beintema JA, Van den Berg AV, Lappe M (2004) Circular receptive field structures for flow analysis and heading detection. In: Vaina LM, Beardsley SA, Rushton S (eds) The structure of receptive fields for flow analysis and heading detection. Kluwer Academic Publishers, Norwell, pp 223–248

    Google Scholar 

  • Ben Hamed S, Duhamel JR, Bremmer F, Graf W (2002) Visual receptive field modulation in the lateral intraparietal area during attentive fixation and free gaze. Cereb Cortex 12:234–245

    Article  CAS  PubMed  Google Scholar 

  • Bradley DC, Maxwell M, Andersen RA, Banks MS, Shenoy KV (1996) Mechanisms of heading perception in primate visual cortex. Science 273:1544–1547

    Article  CAS  PubMed  Google Scholar 

  • Bremmer F, Ilg UJ, Thiele A, Distler C, Hoffmann KP (1997) Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. J Neurophysiol 77:944–961

    CAS  PubMed  Google Scholar 

  • Bremmer F, Kubischik M, Pekel M, Lappe M, Hoffmann KP (1999) Linear vestibular self-motion signals in monkey medial superior temporal area. Ann N Y Acad Sci 871(272–81):272–281

    Article  CAS  PubMed  Google Scholar 

  • Bremmer F, Duhamel J-R, Ben Hamed S, Graf W (2002) Heading encoding in the macaque ventral intraparietal area (VIP). Eur J Neurosci 16:1554–1568

    Article  PubMed  Google Scholar 

  • Britten KH, van Wezel RJ (1998) Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci 1:59–63

    Article  CAS  PubMed  Google Scholar 

  • Britten KH, van Wezel RJ (2002) Area MST and heading perception in macaque monkeys. Cereb Cortex 12:692–701

    Article  PubMed  Google Scholar 

  • Cutting JE, Vishton PM, Fluckiger M, Baumberger B, Gerndt JD (1997) Heading and path information from retinal flow in naturalistic environments. Percept Psychophys 59:426–441

    CAS  PubMed  Google Scholar 

  • Duffy CJ, Wurtz RH (1991a) Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol 65:1329–1345

    CAS  PubMed  Google Scholar 

  • Duffy CJ, Wurtz RH (1991b) Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. J Neurophysiol 65:1346–1359

    CAS  PubMed  Google Scholar 

  • Duffy CJ, Wurtz RH (1997) Planar directional contributions to optic flow responses in MST neurons. J Neurophysiol 77:782–796

    CAS  PubMed  Google Scholar 

  • Duhamel JR, Bremmer F, BenHamed S, Graf W (1997) Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389:845–848

    Article  CAS  PubMed  Google Scholar 

  • Erickson RG, Thier P (1991) A neuronal correlate of spatial stability during periods of self-induced visual motion. Exp Brain Res 86:608–616

    Article  CAS  PubMed  Google Scholar 

  • Froehler MT, Duffy CJ (2002) Cortical neurons encoding path and place: where you go is where you are. Science 295:2462–2465

    Article  CAS  PubMed  Google Scholar 

  • Galletti C, Squatrito S, Battaglini PP, Grazia MM (1984) ‘Real-motion’ cells in the primary visual cortex of macaque monkeys. Brain Res 301:95–110

    Article  CAS  PubMed  Google Scholar 

  • Galletti C, Battaglini PP, Aicardi G (1988) ‘Real-motion’ cells in visual area V2 of behaving macaque monkeys. Exp Brain Res 69:279–288

    Article  CAS  PubMed  Google Scholar 

  • Galletti C, Battaglini PP, Fattori P (1990) ‘Real-motion’ cells in area V3A of macaque visual cortex. Exp Brain Res 82:67–76

    Article  CAS  PubMed  Google Scholar 

  • Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston

    Google Scholar 

  • Graziano MS, Andersen RA, Snowden RJ (1994) Tuning of MST neurons to spiral motions. J Neurosci 14:54–67

    CAS  PubMed  Google Scholar 

  • Grigo A, Lappe M (1999) Dynamical use of different sources of information in heading judgments from retinal flow. J Opt Soc Am A Opt Image Sci Vis 16:2079–2091

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Watkins PV, Angelaki DE, DeAngelis GC (2006) Visual and nonvisual contributions to three-dimensional heading selectivity in the medial superior temporal area. J Neurosci 26:73–85

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Angelaki DE, DeAngelis GC (2008) Neural correlates of multisensory cue integration in macaque MSTd. Nat Neurosci 11:1201–1210

    Article  CAS  PubMed  Google Scholar 

  • Judge SJ, Richmond BJ, Chu FC (1980) Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res 20:535–538

    Article  CAS  PubMed  Google Scholar 

  • Koenderink JJ, Van Doorn AJ (1987) Facts on optic flow. Biol Cybern 56:247–254

    Article  CAS  PubMed  Google Scholar 

  • Lagae L, Maes H, Raiguel S, Xiao DK, Orban GA (1994) Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. J Neurophysiol 71:1597–1626

    CAS  PubMed  Google Scholar 

  • Lappe M, Rauschecker JP (1993) A neural network for the processing of optic flow from ego-motion in man and higher mammals. Neural Comput 5:374–391 Ref Type: Generic

    Article  Google Scholar 

  • Lappe M, Rauschecker JP (1994) Heading detection from optic flow. Nature 369:712–713

    Article  CAS  PubMed  Google Scholar 

  • Lappe M, Rauschecker JP (1995) Motion anisotropies and heading detection. Biol Cybern 72:261–277

    Article  CAS  PubMed  Google Scholar 

  • Lappe M, Bremmer F, Pekel M, Thiele A, Hoffmann KP (1996) Optic flow processing in monkey STS: a theoretical and experimental approach. J Neurosci 16:6265–6285

    CAS  PubMed  Google Scholar 

  • Lappe M, Pekel M, Hoffmann K-P (1998) Optokinetic eye movements elicited by radial optic flow in the macaque monkey. J Neurophysiol 79:1461–1480

    CAS  PubMed  Google Scholar 

  • Lappe M, Bremmer F, Van den Berg AV (1999) Perception of self motion from visual flow. Trends Cogn Sci 3:329–336

    Article  PubMed  Google Scholar 

  • Li L, Warren WH Jr (2000) Perception of heading during rotation: sufficiency of dense motion parallax and reference objects. Vision Res 40:3873–3894

    Article  CAS  PubMed  Google Scholar 

  • Llewellyn KR (1971) Visual guidance of locomotion. J Exp Psychol 91:245–261

    Article  CAS  PubMed  Google Scholar 

  • Longuet-Higgins HC (1984) The visual ambiguity of a moving plane. Proc R Soc Lond B Biol Sci 223:165–175

    Article  CAS  PubMed  Google Scholar 

  • Morgan ML, DeAngelis GC, Angelaki DE (2008) Multisensory integration in macaque visual cortex depends on cue reliability. Neuron 59:662–673

    Article  CAS  PubMed  Google Scholar 

  • Page WK, Duffy CJ (1999) MST neuronal responses to heading direction during pursuit eye movements. J Neurophysiol 81:596–610

    CAS  PubMed  Google Scholar 

  • Perrone JA, Stone LS (1994) A model of self-motion estimation within primate extrastriate visual cortex. Vision Res 34:2917–2938

    Article  CAS  PubMed  Google Scholar 

  • Regan D, Beverly KI (1982) How do we avoid confounding the direction we are looking and the direction we are moving? Science 215:194–196

    Article  CAS  PubMed  Google Scholar 

  • Royden CS, Banks MS, Crowell JA (1992) The perception of heading during eye movements. Nature 360:583–585

    Article  CAS  PubMed  Google Scholar 

  • Rushton SK, Harris JM, Lloyd MR, Wann JP (1998) Guidance of locomotion on foot uses perceived target location rather than optic flow. Curr Biol 8:1191–1194

    Article  CAS  PubMed  Google Scholar 

  • Schlack A, Sterbing-D’Angelo SJ, Hartung K, Hoffmann KP, Bremmer F (2005) Multisensory space representations in the macaque ventral intraparietal area. J Neurosci 25:4616–4625

    Article  CAS  PubMed  Google Scholar 

  • Schoppmann A, Hoffmann K-P (1976) Continuous mapping of direction selectivity in the cat’s visual cortex. Neurosci Lett 2:177–181

    Article  CAS  PubMed  Google Scholar 

  • Shenoy KV, Bradley DC, Andersen RA (1999) Influence of gaze rotation on the visual response of primate MSTd neurons. J Neurophysiol 81:2764–2786

    CAS  PubMed  Google Scholar 

  • Tanaka K, Saito H (1989) Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol 62:626–641

    CAS  PubMed  Google Scholar 

  • Treue S, Maunsell JH (1996) Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382:539–541

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay UD, Page WK, Duffy CJ (2000) MST responses to pursuit across optic flow with motion parallax. J Neurophysiol 84:818–826

    CAS  PubMed  Google Scholar 

  • Van den Berg AV (1992) Robustness of perception of heading from optic flow. Vision Res 32:1285–1296

    Article  PubMed  Google Scholar 

  • Van den Berg AV (1993) Perception of heading. Nature 365:497–498

    Article  PubMed  Google Scholar 

  • Van den Berg AV (1996) Judgements of heading. Vision Res 36:2337–2350

    Article  PubMed  Google Scholar 

  • Warren WH, Hannon DJ (1988) Direction of self-motion is perceived from optical flow. Nature 336:162–163

    Article  Google Scholar 

  • Warren WHJ, Hannon DJ (1990) Eye movements and optical flow. J Opt Soc Am [A] 7:160–169

    Article  Google Scholar 

  • Wei M, Angelaki DE (2006) Foveal visual strategy during self-motion is independent of spatial attention. J Neurosci 26:564–572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by DFG-Sonderforschungsbereich 509.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Bremmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bremmer, F., Kubischik, M., Pekel, M. et al. Visual selectivity for heading in monkey area MST. Exp Brain Res 200, 51–60 (2010). https://doi.org/10.1007/s00221-009-1990-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1990-3

Keywords

Navigation