Skip to main content
Log in

Short-duration transcranial random noise stimulation induces blood oxygenation level dependent response attenuation in the human motor cortex

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Manipulation of cortical excitability can be experimentally achieved by the application of transcranial random noise stimulation (tRNS). TRNS is a novel method of non-invasive electrical brain stimulation whereby a random electrical oscillation spectrum is applied over the cortex. A previous study recently reported that application of weak 10-min tRNS over primary motor cortex (M1) enhances corticospinal excitability both during and after stimulation in the healthy human brain. Here, blood oxygenation level dependent (BOLD) MRI was used to monitor modulations in human sensorimotor activity after the application of 4-min tRNS. Activation maps for a right hand index–thumb finger opposition task were obtained for nine subjects after sham and 1-mA tRNS in separate sessions. TRNS of the left-hemispheric sensorimotor cortex resulted in a decrease in the mean number of activated pixels by 17%, in the hand area. Our results indicate that tRNS applied with different durations and/or in combination with a task might result in different outcomes. Application of tRNS to the human cortex allows an unnoticeable and thus painless, selective, non-invasive and reversible activity change within the cortex, its main advantage being the direction insensitivity of the stimulation. TRNS also provides a qualitatively new way of producing and interfering with brain plasticity, although, further research is required to optimise stimulation parameters and efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antal A, Begemeier S, Nitsche MA, Paulus W (2008) Prior state of cortical activity influences subsequent practicing of a visuomotor coordination task. Neuropsychologia 46(13):3157–3161

    Article  PubMed  Google Scholar 

  • Baudewig J, Nitsche MA, Paulus W, Frahm J (2001) Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magn Reson Med 45(2):196–201

    Article  PubMed  CAS  Google Scholar 

  • Benabid AL, Wallace B, Mitrofanis J, Xia R, Piallat B, Chabardes S, Berger F (2005) A putative generalized model of the effects and mechanism of action of high frequency electrical stimulation of the central nervous system. Acta Neurol Belg 105(3):149–157

    PubMed  Google Scholar 

  • Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2(1):32–48

    PubMed  CAS  Google Scholar 

  • Bikson M, Hahn PJ, Fox JE, Jefferys JG (2003) Depolarization block of neurons during maintenance of electrographic seizures. J Neurophysiol 90(4):2402–2408

    Article  PubMed  Google Scholar 

  • Bromm B (1968) Die Natrium-Gleichrichtung der unterschwellig erregten Membran in der quantitative Formulierung der Ionentheorie. Pflügers Arch 302:233–244

    Article  PubMed  CAS  Google Scholar 

  • Fregni F, Pascual-Leone A (2007) Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol 3(7):383–393

    Article  PubMed  Google Scholar 

  • Grenier F, Timofeev I, Steriade M (2001) Focal synchronization of ripples (80–200 Hz) in neocortex and their neuronal correlates. J Neurophysiol 86:1884–1898

    PubMed  CAS  Google Scholar 

  • Kwon YH, Ko MH, Ahn SH, Kim YH, Song JC, Lee CH, Chang MC, Jang SH (2008) Primary motor cortex activation by transcranial direct current stimulation in the human brain. Neurosci Lett 435(1):56–59

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    Article  PubMed  CAS  Google Scholar 

  • Lozano AM, Eltahawy H (2004) How does DBS work? Suppl Clin Neurophysiol 57:733–736

    Article  PubMed  Google Scholar 

  • Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A (2000) Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res 133(4):425–430

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka AJ, Abbas PJ, Rubinstein JT, Miller CA (2000) The neuronal response to electrical constant-amplitude pulse train stimulation: additive Gaussian noise. Hear Res 149(1–2):129–137

    Article  PubMed  CAS  Google Scholar 

  • Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527:633–639

    Article  PubMed  CAS  Google Scholar 

  • Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57:1899–1901

    PubMed  CAS  Google Scholar 

  • Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W (2003) Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol 114(11):2220–2222

    Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Schoen I, Fromherz P (2008) Extracellular stimulation of mammalian neurons through repetitive activation of Na+ channels by weak capacitive currents on a silicon chip. J Neurophysiol 100:346–357

    Article  PubMed  Google Scholar 

  • Sejnowski TJ (1977) Statistical constraints on synaptic plasticity. J Theor Biol 69(2):385–389

    Article  PubMed  CAS  Google Scholar 

  • Terney D, Chaieb L, Moliadze V, Antal A, Paulus W (2008) Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci 28(52):14147–14155

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan A, Freeman RD (2007) Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nat Neurosci 10(10):1308–1312

    Article  PubMed  CAS  Google Scholar 

  • Ward LM, Doesburg SM, Kitajo K, MacLean SE, Roggeveen AB (2006) Neural synchrony in stochastic resonance, attention, and consciousness. Can J Exp Psychol 60(4):319–326

    PubMed  Google Scholar 

  • Wiesenfeld K, Moss F (1995) Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373(6509):33–36

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Struzik ZR, Soma R, Ohashi K, Kwak S (2005) Noisy vestibular stimulation improves autonomic and motor responsiveness in central neuro-degenerative disorders. Ann Neurol 58:175–181

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge our financial support given by the German Ministry for Education and Science (BMBF) via the Bernstein Centre for Computational Neuroscience (BCCN), Goettingen (Grant No. 01GQ0432).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Chaieb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaieb, L., Kovacs, G., Cziraki, C. et al. Short-duration transcranial random noise stimulation induces blood oxygenation level dependent response attenuation in the human motor cortex. Exp Brain Res 198, 439–444 (2009). https://doi.org/10.1007/s00221-009-1938-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1938-7

Keywords

Navigation