Skip to main content
Log in

An fMRI study of brain activation in a visual adaptation task: activation limited to sensory guidance

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Previous neuroimaging studies yielded different patterns of brain areas activated during sensorimotor adaptation, when sensory conflicts are introduced, e.g. by manipulating visual information. We propose that possible reasons might be the lack to control for adaptation or the change in motor performance. In consequence, it was not possible to distinguish between adaptation-related and error-related brain activations. We have developed a sensorimotor adaptation task which controls for these errors using two types of visual distortion and thus is suited to disambiguate sensorimotor adaptation from the related activation patterns. Twenty healthy subjects were scanned by fMRI during a tracking task, while adapting to a visual distortion, which depended either on hand position or on hand velocity. In either case, adaptation was interleaved with a control condition, designed such that the time-course of tracking errors approximated that under visual distortion. We found that adaptation-related neural activation was limited to the left supramarginal and angular gyrus under the position-dependent distortion, but extended bilaterally in the supramarginal gyrus, as well as in the left middle and right superior frontal gyrus under the velocity-dependent distortion. Our findings confirm that equating the errors under both conditions will yield an anatomically more restricted activation pattern compared with other studies. The additional recruitment in right parietal and bilateral frontal areas under the velocity-dependent distortion might reflect a higher computational demand, or the involvement of different adaptive mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. RMSE =  \( {\sqrt {\frac{{{\sum\nolimits_{i = 1}^n {(\Updelta x_{i} )^{2} + {\sum\nolimits_{i = 1}^n {(\Updelta y_{i} )^{2} } }} }}} {n}} } \), with Δx i und Δy i  = Euclidian distance between cursor and target, and n = number of data.

References

  • Anderson J (1982) Acquisition of cognitive skill. Psychol Rev 89:369–406

    Article  Google Scholar 

  • Balslev D, Nielsen FA, Frutiger SA, Sidtis JJ, Christiansen TB, Svarer C, Strother SC, Rottenberg DA, Hansen LK, Paulson OB, Law I (2002) Cluster analysis of activity–time series in motor learning. Hum Brain Mapp 15:135–145

    Article  PubMed  Google Scholar 

  • Binkofski F, Amunts K, Stephan KM, Posse S, Schormann T, Freund HJ, Zilles K, Seitz RJ (2000) Broca’s region subserves imagery of motion: a combined cytoarchitectonic and fMRI study. Hum Brain Mapp 11:273–285

    Article  PubMed  CAS  Google Scholar 

  • Bock O (2003) Sensorimotor adaptation to visual distortions with different kinematic coupling. Exp Brain Res 151:557–560

    Article  PubMed  Google Scholar 

  • Bonda E, Petrides M, Frey S, Evans A (1995) Neural correlates of mental transformations of the body-in-space. Proc Natl Acad Sci USA 92:11180–11184

    Article  PubMed  CAS  Google Scholar 

  • Brett M (1999) The MNI brain and the Talairach atlas. Retrieved 18th december 2004. Online at http://www.mrc-cbu.cam.ac.uk/Imaging/Common/mnispace.shtm

  • Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280:747–749

    Article  PubMed  CAS  Google Scholar 

  • Clower DM, Hoffman JM, Votaw JR, Faber TL, Woods RP, Alexander GE (1996) Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature 383:618–621

    Article  PubMed  CAS  Google Scholar 

  • Della-Maggiore V, McIntosh A (2005) Time course of changes in brain activity and functional connectivity associated with lomg-term adaptation to a rotational transformation. J Neurophysiol 93:2254–2262

    Article  PubMed  Google Scholar 

  • Desmurget M, Epstein CM, Turner RS, Prablanc C, Alexander GE, Grafton ST (1999) Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat Neurosci 2:563–567

    Article  PubMed  CAS  Google Scholar 

  • Desmurget M, Grea H, Grethe JS, Prablanc C, Alexander GE, Grafton ST (2001) Functional anatomy of nonvisual feedback loops during reaching:a positron emission tomography study. J Neurosci 21:2919–2928

    PubMed  CAS  Google Scholar 

  • Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R (2005) Neural correlates of reach errors. J Neurosci 25:9919–9931

    Article  PubMed  CAS  Google Scholar 

  • Duvernoy H (1999) The human brain: surface, blood supply, and three-dimensional sectional anatomy. Springer, New York

    Google Scholar 

  • Eversheim U, Bock O (2001) Evidence for processing stages in skill acquisition: a dual-task study. Learn Mem 8:183–189

    Article  PubMed  CAS  Google Scholar 

  • Fitts P (1964) Perceptual-motor skill learning. In: Melton AW (ed) Categories of human learning. Academic, New York pp 243–285

    Google Scholar 

  • Flament D, Ellermann JM, Kim S-G, Ugurbil K, Ebner TJ (1996) Functional magnetic resonance imaging of cerebellar activation during the learning of a visuomotor dissociation task. Hum Brain Mapp 4:210–226

    Article  Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  • Ghilardi M, Ghez C, Dhawan V, Moeller J, Mentis M, Nakamura T, Antonini A, Eidelberg D (2000) Patterns of regional brain activation associated with different forms of motor learning. Brain Res 871:127–145

    Article  PubMed  CAS  Google Scholar 

  • Graydon F, Thomas C, Brooks V, Menon R (2000) The functional neuroanatomy of visually guided motor learning in a transformed environment using fMRI. Soc Neurosci Abstr 26:706

    Google Scholar 

  • Graydon FX, Friston KJ, Thomas CG, Brooks VB, Menon RS (2005) Learning-related fMRI activation associated with a rotational visuo-motor transformation. Brain Res Cogn Brain Res 22:373–383

    Article  PubMed  Google Scholar 

  • Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Yoshioka T, Kawato M (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403:192–195

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Kawashima R, Satoh K, Kinomura S, Goto R, Sugiura M, Ito M, Fukuda H (1997) Activity in the parietal area during visuomotor learning with optical rotation. Neuroreport 8:3979–3983

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Kawashima R, Satoh K, Kinomura S, Sugiura M, Goto R, Ito M, Fukuda H (2000) A PET study of visuomotor learning under optical rotation. Neuroimage 11:505–516

    Article  PubMed  CAS  Google Scholar 

  • Jueptner M, Weiller C (1998) A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain 121(Pt 8):1437–1449

    Article  PubMed  Google Scholar 

  • Krakauer JW, Ghilardi MF, Ghez C (1999) Independent learning of internal models for kinematic and dynamic control of reaching. Nat Neurosci 2:1026–1031

    Article  PubMed  CAS  Google Scholar 

  • Krakauer JW, Ghilardi MF, Mentis M, Barnes A, Veytsman M, Eidelberg D, Ghez C (2004) Differential cortical and subcortical activations in learning rotations and gains for reaching: a PET study. J Neurophysiol 91:924–933

    Article  PubMed  Google Scholar 

  • Krebs HI, Brashers-Krug T, Rauch SL, Savage CR, Hogan N, Rubin RH, Fischman AJ, Alpert NM (1998) Robot-aided functional imaging: application to a motor learning study. Hum Brain Mapp 6:59–72

    Article  PubMed  CAS  Google Scholar 

  • Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10:120–131

    Article  PubMed  CAS  Google Scholar 

  • Lang W, Lang M, Podreka I, Steiner M, Uhl F, Suess E, Muller C, Deecke L (1988) DC-potential shifts and regional cerebral blood flow reveal frontal cortex involvement in human visuomotor learning. Exp Brain Res 71:353–364

    PubMed  CAS  Google Scholar 

  • Logie R, Baddeley A, Mané A, Donchin E, Sheptak R (1989) Working memory in the acquisition of complex cognitive skills. Acta Psychol Amst 79:53–87

    Article  Google Scholar 

  • Muhlau M, Hermsdorfer J, Goldenberg G, Wohlschlager AM, Castrop F, Stahl R, Rottinger M, Erhard P, Haslinger B, Ceballos-Baumann AO, Conrad B, Boecker H (2005) Left inferior parietal dominance in gesture imitation: an fMRI study. Neuropsychologia 43:1086–1098

    Article  PubMed  Google Scholar 

  • Nezafat R, Shadmehr R, Holcomb HH (2001) Long-term adaptation to dynamics of reaching movements: a PET study. Exp Brain Res 140:66–76

    Article  PubMed  CAS  Google Scholar 

  • Nickel J, Seitz RJ (2005) Functional clusters in the human parietal cortex as revealed by an observer-independent meta-analysis of functional activation studies. Anat Embryol (Berl) 210:463–472

    Article  Google Scholar 

  • Nobre AC, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RS, Frith CD (1997) Functional localization of the system for visuospatial attention using positron emission tomography. Brain 120(Pt 3):515–533

    Article  PubMed  Google Scholar 

  • Parsons LM, Fox PT, Downs JH, Glass T, Hirsch TB, Martin CC, Jerabek PA, Lancaster JL (1995) Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature 375:54–58

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296

    Article  PubMed  CAS  Google Scholar 

  • Rushworth MF, Krams M, Passingham RE (2001) The attentional role of the left parietal cortex: the distinct lateralization and localization of motor attention in the human brain. J Cogn Neurosci 13:698–710

    Article  PubMed  CAS  Google Scholar 

  • Seidler RD, Purushotham A, Kim SG, Ugurbil K, Willingham D, Ashe J (2002) Cerebellum activation associated with performance change but not motor learning. Science 296:2043–2046

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Brashers-Krug T (1997) Functional stages in the formation of human long-term motor memory. J Neurosci 17:409–419

    PubMed  CAS  Google Scholar 

  • Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277:821–825

    Article  PubMed  CAS  Google Scholar 

  • Stratton GM (1897) Vision without inversion for the retinal image. Psychol Rev 4:341–481

    Article  Google Scholar 

  • Tamada T, Miyauchi S, Imamizu H, Yoshioka T, Kawato M (1999) Cerebro-cerebellar functional connectivity revealed by the laterality index in tool-use learning. Neuroreport 10:325–331

    Article  PubMed  CAS  Google Scholar 

  • Tong C, Wolpert DM, Flanagan JR (2002) Kinematics and dynamics are not represented independently in motor working memory: evidence from an interference study. J Neurosci 22:1108–1113

    PubMed  CAS  Google Scholar 

  • Welch RB, Bridgeman B, Anand S, Browman KE (1993) Alternating prism exposure causes dual adaptation and generalization to a novel displacement. Percept Psychophys 54:195–204

    PubMed  CAS  Google Scholar 

  • Wise SP, Boussaoud D, Johnson PB, Caminiti R (1997) Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu Rev Neurosci 20:25–42

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Mark Mon-Williams, University of Aberdeen, Sergio della Sala, University of Edingburgh, as well as to Gordon Waiter, Andrew Bromiley, and MR staff from the Centre of Biomedical Functional Imaging, Aberdeen. This work was supported by EU program “Enhancing Access to Research Infrastructures”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela Girgenrath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girgenrath, M., Bock, O. & Seitz, R.J. An fMRI study of brain activation in a visual adaptation task: activation limited to sensory guidance. Exp Brain Res 184, 561–569 (2008). https://doi.org/10.1007/s00221-007-1124-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1124-8

Keywords

Navigation