Skip to main content

Advertisement

Log in

Interlimb transfer of visuomotor rotations depends on handedness

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We previously reported that opposite arm adaptation to visuomotor rotations improved the initial direction of right arm movements in right-handers, whereas it only improved the final position accuracy of their left arm movements. We now investigate the pattern of interlimb transfer following adaptation to 30° visuomotor rotations in left-handers to determine whether the direction of transfer depends on handedness. Our results indicate unambiguous transfer across the arms. In terms of final position accuracy, the direction of transfer is opposite to that observed in right-handers, such that transfer only occurred from the left to the right arm movements. Directional accuracy also showed the opposite pattern of transfer to that of right-handers: initial movement direction, calculated at peak tangential acceleration, transferred only from right to left arms. When movement direction was measured later in the movement, at peak tangential velocity, asymmetrical transfer also occurred, such that greater transfer occurred from right to left arms. However, a small, but significant influence of opposite arm adaptation also occurred for the left arm, which might reflect differences in the use of the nondominant arm between left- and right-handers. Overall, our results indicate that left-handers show a mirror-imaged pattern of interlimb transfer in visuomotor adaptation to that previously reported for right-handers. This pattern of transfer is consistent with the hypothesis that asymmetry in interlimb transfer is dependent on differential specialization of the dominant and nondominant hemisphere/limb systems for trajectory and positional control, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bagesteiro LB, Sainburg RL (2002) Handedness: dominant arm advantages in control of limb dynamics. J Neurophysiol 88:2408–2421

    Article  PubMed  Google Scholar 

  • Boulinguez P, Velay JL, Nougier V (2001) Manual asymmetries in reaching movement control. II: study of left-handers. Cortex 37:123–138

    Article  PubMed  CAS  Google Scholar 

  • Brown SH, Cooke JD (1981) Responses to force perturbations preceding voluntary human arm movements. Brain Res 220:350–355

    Article  PubMed  CAS  Google Scholar 

  • Brown SH, Cooke JD (1984) Initial agonist burst duration depends on movement amplitude. Exp Brain Res 55:523–527

    Article  PubMed  CAS  Google Scholar 

  • Brown SH, Cooke JD (1986) Initial agonist burst is modified by perturbations preceding movement. Brain Res 377:311–322

    Article  PubMed  CAS  Google Scholar 

  • Bryden MP (1982) Laterality: functional asymmetry in the intact brain. Academic, New York

    Google Scholar 

  • Criscimagna-Hemminger SE, Donchin O, Gazzaniga MS, Shadmehr R (2003) Learned dynamics of reaching movements generalize from dominant to nondominant arm. J Neurophysiol 89:168–176

    Article  PubMed  Google Scholar 

  • Dassonville P, Zhu XH, Uurbil K, Kim SG, Ashe J (1997) Functional activation in motor cortex reflects the direction and the degree of handedness. Proc Natl Acad Sci USA 94:14015–14018

    Google Scholar 

  • Dizio P, Lackner JR (1995) Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm. J Neurophysiol 74:1787–1792

    PubMed  CAS  Google Scholar 

  • Ghez C (1979) Contributions of central programs to rapid limb movement in the cat. In: AhaW VJ (ed) Integration in the nervous system. Igaku-Shoin, Tokyo, New York

    Google Scholar 

  • Ghez C, Gordon J (1987) Trajectory control in targeted force impulses. I. Role of opposing muscles. Exp Brain Res 67:225–240

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb GL (1996) On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms. J Neurophysiol 76:3207–3229

    PubMed  CAS  Google Scholar 

  • Haaland KY, Prestopnik JL, Knight RT, Lee RR (2004) Hemispheric asymmetries for kinematic and positional aspects of reaching. Brain 127:1145–1158

    Article  PubMed  Google Scholar 

  • Halsband U (1992) Left hemisphere preponderance in trajectorial learning. Neuroreport 3:397–400

    Article  PubMed  CAS  Google Scholar 

  • Hardyck C, Petrinovich LF (1977) Left-handedness. Psychol Bull 84:385–404

    Article  PubMed  CAS  Google Scholar 

  • Hicks RE (1975) Intrahemispheric response competition between vocal and unimanual performances in normam adult human males. J Comp Physiol Psychol 89:50–60

    Article  PubMed  CAS  Google Scholar 

  • Hirayama M, Kawato M, Jordan MI (1993) The cascade neural network model and a speed-accuracy trade-off of arm movement. J Mot behav 25:162–174

    Article  PubMed  Google Scholar 

  • Kawashima R, Matsumura M, Sadato N, Naito E, Waki A, Nakamura S, Matsunami K, Fukuda H, Yonekura Y (1998) Regional cerebral blood flow changes in human brain related to ipsilateral and contralateral complex hand movements—a PET study. Eur J Neurosci 10:2254–2260

    Article  PubMed  CAS  Google Scholar 

  • Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K, Georgopoulos AP (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261:615–617

    Article  PubMed  CAS  Google Scholar 

  • Kurtzer I, Herter TM, Scott SH (2005) Random change in cortical load representation suggests distinct control of posture and movement. Nat Neurosci 8:498–504

    PubMed  CAS  Google Scholar 

  • Kutas M, Donchin E (1974) Studies of squeezing: handedness, responding hand, response force, and asymmetry of readiness potential. Science 186:545–548

    Article  PubMed  CAS  Google Scholar 

  • Lackner JR, Dizio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 72:299–313

    PubMed  CAS  Google Scholar 

  • Laszlo JI, Baguley RA, Bairstow PJ (1970) Bilateral transfer in tapping skill in the absence of peripheral information. J Mot Behav 2:261–271

    Google Scholar 

  • Macdonell RA, Shapiro BE, Chiappa KH, Helmers SL, Cros D, Day BJ, Shahani BT (1991) Hemispheric threshold differences for motor evoked potentials produced by magnetic coil stimulation. Neurology 41:1441–1444

    PubMed  CAS  Google Scholar 

  • Malfait N, Ostry DJ (2004) Is interlimb transfer of force-field adaptation a cognitive response to the sudden introduction of load? J Neurosci 24:8084–8089

    Article  PubMed  CAS  Google Scholar 

  • Marzi CA, Bisiacchi P, Nicoletti R (1991) Is interhemispheric transfer of visuomotor information asymmetric? Evidence from a meta-analysis. Neuropsychologia 29:1163–1177

    Article  PubMed  CAS  Google Scholar 

  • Matsunami K, Hamada I (1981) Characteristics of the ipsilateral movement-related neuron in the motor cortex of the monkey. Brain Res 204:29–42

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Parlow SE, Kinsbourne M (1989) Asymmetrical transfer of training between hands: implications for interhemispheric communication in normal brain. Brain Cogn 11:98–113

    Article  PubMed  CAS  Google Scholar 

  • Sainburg RL (2002) Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res 142:241–258

    Article  PubMed  Google Scholar 

  • Sainburg RL, Kalakanis D (2000) Differences in control of limb dynamics during dominant and nondominant arm reaching. J Neurophysiol 83:2661–2675

    PubMed  CAS  Google Scholar 

  • Sainburg RL, Schaefer SY (2004) Interlimb differences in control of movement extent. J Neurophysiol 92:1374–1383

    Article  PubMed  Google Scholar 

  • Sainburg RL, Wang J (2002) Interlimb transfer of visuomotor rotations: independence of direction and final position information. Exp Brain Res 145:437–447

    Article  PubMed  Google Scholar 

  • Sainburg RL, Ghez C, Kalakanis D (1999) Intersegmental dynamics are controlled by sequential anticipatory, error correction, and postural mechanisms. J Neurophysiol 81:1040–1056

    Google Scholar 

  • Serrien DJ, Ivry RB, Swinnen SP (2006) Dynamics of hemispheric specialization and integration in the context of motor control. Nat Rev Neurosci 7:160–6

    Article  PubMed  CAS  Google Scholar 

  • Taylor HG, Heilman KM (1980) Left-hemisphere motor dominance in righthanders. Cortex 16:587–603

    PubMed  CAS  Google Scholar 

  • Thut G, Cook ND, Regard M, Leenders KL, Halsband U, Landis T (1996) Intermanual transfer of proximal and distal motor engrams in humans. Exp Brain Res 108:321–327

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sainburg RL (2003) Mechanisms underlying interlimb transfer of visuomotor rotations. Exp Brain Res 149:520–526

    PubMed  Google Scholar 

  • Wang J, Sainburg RL (2004a) Interlimb transfer of novel inertial dynamics is asymmetrical. J Neurophysiol 92:349–360

    Article  Google Scholar 

  • Wang J, Sainburg RL (2004b). Limitations in interlimb transfer of visuomotor rotations. Exp Brain Res 155:1–8

    Article  Google Scholar 

  • Wang J, Sainburg RL (2005) Adaptation to visuomotor rotations remaps movement vectors, not final positions. J Neurosci 25:4024–4030

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sainburg RL (2006) The symmetry of interlimb transfer depends on workspace locations. Exp Brain Res 170:464–471

    Article  PubMed  Google Scholar 

  • Winstein CJ, Pohl PS (1995) Effects of unilateral brain damage on the control of goal-directed hand movements. Exp Brain Res 105:163–174

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Institutes of Health grants R01HD39311 and NRSA 1-F32-NS-46239-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsung Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Sainburg, R.L. Interlimb transfer of visuomotor rotations depends on handedness. Exp Brain Res 175, 223–230 (2006). https://doi.org/10.1007/s00221-006-0543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0543-2

Keywords

Navigation