Skip to main content
Log in

Electrophysiological correlates of neural plasticity compensating for ischemia-induced damage in the hippocampus

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Injury to the brain often results in loss of synapses or cell death in the damaged area. Subsequent to the injury, the areas that are not directly affected often exhibit enhanced neuronal plasticity. Although there are many reports of morphological changes resulting from such plasticity, their functional consequences are poorly understood. In this study we examined electrophysiological changes associated with ischemia-induced neurogenesis in the hippocampus, a brain region that is particularly vulnerable but also exceptionally plastic. Transient global ischemia was induced in Sprague-Dawley rats by occlusion of both carotid arteries and a reduction in blood pressure for 12 min. The procedure resulted in delayed cell death in the CA1 field of the hippocampus while the dentate gyrus (DG) was spared. To assess neurogenesis and synaptic changes in parallel we used both hemispheres from each animal. One side was used for immunohistochemistry and the other for in vitro electrophysiological experiments in brain slices. Synaptic field responses and synaptic plasticity (LTP) in perforant path within the DG were reduced by 50% at 10 days after the ischemic injury but recovered at 35 days. Synaptic responses in non-neurogenic CA1 were abolished in parallel with cell death and did not recover. Gamma irradiation applied focally to the head selectively prevented neurogenesis and the synaptic recovery in the DG. These experiments reveal electrophysiological changes associated with reactive neural plasticity in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–c
Fig. 2a,b
Fig. 3a–c
Fig. 4a–c
Fig. 5a–d
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altman J (1962) Are new neurons formed in the brains of adult animals? Science 135:1127–1128

    CAS  PubMed  Google Scholar 

  • Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–336

    Article  CAS  PubMed  Google Scholar 

  • Aoyagi A, Saito H, Abe K, Nishiyama N (1998) Early impairment and late recovery of synaptic transmission in the rat dentate gyrus following transient forebrain ischemia in vivo. Brain Res 799:130–137

    Article  CAS  PubMed  Google Scholar 

  • Arvidsson A, Kokaia Z, Lindvall O (2001) NMDA receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke. Eur J Neurosci 14:10–18

    Article  CAS  PubMed  Google Scholar 

  • Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    Article  CAS  PubMed  Google Scholar 

  • Auer RN, Jensen ML, Whishaw IQ (1989) Neurobehavioral deficit due to ischemic brain damage limited to half of the CA1 sector of the hippocampus. J Neurosci 9:1641–1647

    CAS  PubMed  Google Scholar 

  • Barnes CA (1994) Normal aging: regionally specific changes in hippocampal synaptic transmission. TINS 17:13–18

    CAS  PubMed  Google Scholar 

  • Bernabeu R, Sharp FR (2000) NMDA and AMPA/Kainate glutamate receptors modulate dentate neurogenesis and CA3 synapsin-I in normal and ischemic hippocampus. J Cereb Blood Flow Metab 20:1669–1680

    Article  CAS  PubMed  Google Scholar 

  • Biernaskie J, Corbett D (2001) Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J Neurosci 21:5272–5280

    CAS  PubMed  Google Scholar 

  • Briones TL, Suh E, Jozsa L, Hattar H, Chai J, Wadowska M (2004) Behaviorally induced ultrastructural plascticity in the hippocampal region after cerebral ischemia. Brain Res 997:137–146

    Article  CAS  PubMed  Google Scholar 

  • Cameron HA, McKay RDG (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417

    Article  CAS  PubMed  Google Scholar 

  • Cameron HA, McEwen B, Gould E (1995) Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 15:4687–4692

    CAS  PubMed  Google Scholar 

  • Cooper-Kuhn CM, Kuhn HG (2001) Is it all DNA repair? Methodological considerations for detecting neurogenesis in the adult brain. Dev Brain Res 134:13–21

    Article  Google Scholar 

  • Crain BJ, Westerkam WD, Harrison AH, Nadler VJ (1988) Selective neuronal death after transient forebrain ischemia in the Mongolian gerbil: a silver impregnation study. Neuroscience 27:387–402

    Article  CAS  PubMed  Google Scholar 

  • Cramer SC, Chopp M (2000) Recovery recapitulates ontogeny. TINS 6:265–270

    Google Scholar 

  • Desmond DW, Moroney JT, Sano M, Stern Y (1996) Recovery of cognitive function after stroke. Stroke 27:1798–1803

    CAS  PubMed  Google Scholar 

  • Hunter AJ, Hatcher J, Virley D, Nelson P, Irving E, Hadingham SJ, Parsons AA (2000) Functional assessments in mice and rats after focal stroke. Neuropharmacology 39:806–816

    Article  CAS  PubMed  Google Scholar 

  • Jones TA, Kleim JA, Greenough WT (1996) Synaptogenesis and dendritic growth in the cortex opposite unilateral sesorimotor cortex damage in adult rats: a quantitative electron microscopic examination. Brain Res 733:142–148

    CAS  PubMed  Google Scholar 

  • Kee N, Preston E, Wojtowicz JM (2001) Enhanced neurogenesis after transient ischemia in the dentate gyrus of the rat. Exp Brain Res 136:313–320

    Article  CAS  PubMed  Google Scholar 

  • Kee N, Sivalingam S, Boonstra R, Wojtowicz JM (2002) The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J Neurosci Methods 115:97–105

    Article  CAS  PubMed  Google Scholar 

  • Kokaia Z, Lindvall O (2003) Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol 13:127–132

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Solway K, Messing RO, Sharp FR (1998) Increased neurogenesis in the dentate gyrus after transient global ischemia in Gerbils. J Neurosci 18:7768–7778

    CAS  PubMed  Google Scholar 

  • Magavi SS, Leavitt BR, Macklis JD (2000) Induction of neurogenesis in the neocortex of adult mice. Nature 405:951–955

    Article  CAS  PubMed  Google Scholar 

  • Mizumatsu S, Monje ML, Morhardt DR, Rola R, Palmer TD, Fike JR (2003) Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res 63:4021–4027

    CAS  PubMed  Google Scholar 

  • Monje ML, Palmer TD (2003) Radiation injury and neurogenesis. Curr Opin Neurol 16:129–134

    Article  PubMed  Google Scholar 

  • Monje ML, Mizumatsu S, Fike JR, Palmer TD (2002) Irradiation induces neural precursor-cell dysfunction. Nat Med 8:955–962

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Togashi H, Ueno K-I, Matsumoto M, Yoshioka M (2001) Aminoguanidine prevented the impairment of learning behavior and hippocampal long-term potentiation following transient cerebral ischemia. Behav Brain Res 120:159–168

    Article  CAS  PubMed  Google Scholar 

  • Nakatomi H, Kuriu T, Okabe S, Yamamoto S-I, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110:429–441

    Article  CAS  PubMed  Google Scholar 

  • Nudo RJ, Plautz EJ, Frost SB (2001) Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 24:1000–1019

    Article  CAS  PubMed  Google Scholar 

  • Parent JM, Tada E, Fike JR, Lowenstein DH (1999) Inhibition of dentate granule cell neurogenesis with brain irradiation does not prevent seizure-induced mossy fiber synaptic reorganization in the rat. J Neurosci 19:4508–4519

    CAS  PubMed  Google Scholar 

  • Pavlides C, Watanabe Y, Magarinos AM, McEwen BS (1995) Opposing roles of type I and type II adrenal steroid receptors in hippocampal long-term potentiation. Neuroscience 68:387–394

    Article  CAS  PubMed  Google Scholar 

  • Raber J, Yanf F, Matsumori Y, Liu Z, Weinstein PR, Fike JR, Liu J (2004) Irradiation attenuates neurogenesis and exacerbates ischemia-induced deficits. Ann Neurol 55:381–389

    Article  PubMed  Google Scholar 

  • Sharp FR, Liu J, Bernabeu R (2002) Neurogenesis following brain ischemia. Dev Brain Res 134:23–30

    Article  CAS  Google Scholar 

  • Smith ML, Auer RN, Siesjo BK (1984) The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neurpathol 64:319–332

    Article  CAS  Google Scholar 

  • Snyder JS, Kee N, Wojtowicz JM (2001) Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J Neurophysiol 85:2423–2431

    CAS  PubMed  Google Scholar 

  • Sutherland G, Lesiuk H, Bose R, Sima AA (1988) Effect of Mannitol, Nimodipine, and Indomethacin singly or in combination on cerebral ischemia in rats. Stroke 19:571–578

    CAS  PubMed  Google Scholar 

  • Tada E, Parent JM, Lowenstein DH, Fike JR (2000) X-irradiation causes a prolonged reduction in cell proliferation in the dentate gyrus of adult rats. Neuroscience 99:33–41

    Article  CAS  PubMed  Google Scholar 

  • Turrigiano GG (1999) Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. TINS 22:221–227

    CAS  PubMed  Google Scholar 

  • Turrigiano GG, Nelson SB (2000) Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol 10:358–364

    Article  CAS  PubMed  Google Scholar 

  • Wiard RP, Dickerson MP, Beek O, Norton R, Cooper BR (1995) Neuroprotective properties of the novel antiepileptic Lamotrigine in a gerbil model of global vertebral ischemia. Stroke 26:466–472

    CAS  PubMed  Google Scholar 

  • Zhang RL, Zhang ZG, Zhang L, Chopp M (2001) Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience 105:33–41

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Technical assistance of Jackie Webster at NRC and Kim Stewart and Dr Howard Dobson at the Guelph University is gratefully acknowledged. This research was supported by the Heart and Stroke Foundation of Canada grants no. 4703, T 5167, and by CIHR. We thank Prof H.L. Atwood for helpful suggestions on the manuscript and Jason Snyder and Martin Esken for help with irradiation and immunohistochemical techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Martin Wojtowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Kee, N., Preston, E. et al. Electrophysiological correlates of neural plasticity compensating for ischemia-induced damage in the hippocampus. Exp Brain Res 165, 250–260 (2005). https://doi.org/10.1007/s00221-005-2296-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-2296-8

Keywords

Navigation