Skip to main content
Log in

Responses of medial olivocochlear neurons

Specifying the central pathways of the medial olivocochlear reflex

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Medial olivocochlear (MOC) neurons project to outer hair cells (OHC), forming the efferent arm of a reflex that affects sound processing and offers protection from acoustic overstimulation. The central pathways that trigger the MOC reflex in response to sound are poorly understood. Insight into these pathways can be obtained by examining the responses of single MOC neurons recorded from anesthetized guinea pigs. Response latencies of MOC neurons are as short as 5 ms. This latency is consistent with the idea that type I, but not type II, auditory-nerve fibers provide the major inputs to the reflex interneurons in the cochlear nucleus. This short latency also implies that the cochlear-nucleus interneurons have rapidly conducting axons. In the cochlear nucleus, lesions of the posteroventral subdivision (PVCN), but not the anteroventral (AVCN) or dorsal (DCN) subdivisions, produce permanent disruption of the MOC reflex, based on a metric of adaptation of the distortion-product otoacoustic emission (DPOAE). This finding supports earlier anatomical results demonstrating that some PVCN neurons project to MOC neurons. Within the PVCN, there are two general types of units when classified according to poststimulus time histograms: onset units and chopper units. The MOC response is sustained and cannot be produced solely by inputs having an onset pattern. The MOC reflex interneurons are thus likely to be chopper units of PVCN. Also supporting this conclusion, chopper units and MOC neurons both have sharp frequency tuning. Thus, the most likely pathway for the sound-evoked MOC reflex begins with the responses of hair cells, proceeds with type I auditory-nerve fibers, PVCN chopper units, and MOC neurons, and ends with the MOC terminations on OHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams JC (1996) Axon terminals on olivocochlear neurons. Soc Neurosci Abstr 22:127

    Google Scholar 

  • Borg E (1973) On the neuronal organization of the acoustic middle ear reflex. A physiological and anatomical study. Brain Res 49:101–123

    Article  CAS  PubMed  Google Scholar 

  • Boyev K, Liberman M, Brown M (2002) Effects of anesthesia on efferent-mediated adaptation of the DPOAE. J Assoc Res Otolaryngol 3:362–373

    Google Scholar 

  • Brawer JR, Morest DK, Kane EC (1974) The neuronal architecture of the cochlear nucleus of the cat. J Comp Neurol 155:251–300

    CAS  PubMed  Google Scholar 

  • Brown MC (1989) Morphology and response properties of single olivocochlear fibers in the guinea pig. Hearing Res 40:93–110

    Article  CAS  Google Scholar 

  • Brown MC (1993) Anatomical and physiological studies of type I and type II spiral ganglion neurons. In: Merchan MA, Juiz JM, Godfrey DA, Mugnaini E (eds) The mammalian cochlear nuclei: organization and function. Plenum, New York, pp 43–54

  • Brown MC (1994) Antidromic responses of single units from the spiral ganglion. J Neurophysiol 71:1835–1847

    CAS  PubMed  Google Scholar 

  • Brown MC (2001) Response adaptation of medial olivocochlear neurons is minimal. J Neurophysiol 86:2381–2392

    CAS  PubMed  Google Scholar 

  • Brown MC, Kujawa SG, Duca ML (1998) Single olivocochlear neurons in the guinea pig. I. Binaural facilitation of responses to high-level noise. J Neurophysiol 79:3077–3087

    PubMed  Google Scholar 

  • Cant NB, Gaston KC (1982) Pathways connecting the right and left cochlear nuclei. J Comp Neurol 212:313–326

    CAS  PubMed  Google Scholar 

  • de Venecia RK, Liberman MC, Guinan JJ Jr, Brown MC (2001) Effects of kainate lesions in different cochlear nucleus regions on the MOC reflex. Abstr Assoc Res Otolaryngol 46

  • Doucet JR, Ryugo DK (2002) Projections of multipolar neurons in the ventral cochlear nucleus to the lateral superior olive in rats. Abstr Assoc Res Otolaryngol

  • Evans EF (1972) The frequency response and other properties of single fibres in the guinea-pig cochlear nerve. J Physiol (Lond) 226:263–287

    Google Scholar 

  • Faye-Lund H (1986) Projection from the inferior colliculus to the superior olivary complex in the albino rat. Anat Embryol 175:35–52

    CAS  PubMed  Google Scholar 

  • Fekete DM, Rouiller EM, Liberman MC, Ryugo DK (1984) The central projections of intracellularly labeled auditory nerve fibers in cats. J Comp Neurol 229:432–450

    CAS  PubMed  Google Scholar 

  • Fex J (1962) Auditory activity in centrifugal and centripetal cochlear fibers in cat. Acta Physiol Scand 55: S1891–68

    Google Scholar 

  • Fex J (1965) Auditory activity in uncrossed centrifugal cochlear fibers in cat. Acta Physiol Scand 64:43–57

    CAS  Google Scholar 

  • Friauf E, Ostwald J (1988) Divergent projections of physiologically characterized rat ventral cochlear nucleus neurons as shown by intra-axonal injection of horseradish peroxidase. Exp Brain Res 73:263–284

    CAS  PubMed  Google Scholar 

  • Godfrey DA, Kiang NYS, Norris BE (1975) Single unit activity in the posteroventral cochlear nucleus of the cat. J Comp Neurol 162:247–268

    CAS  PubMed  Google Scholar 

  • Guinan JJ Jr (1996) The physiology of olivocochlear efferents. In: Dallos P, Popper AN, Fay RR (eds) The cochlea. Springer, New York, pp 435–502

  • Guinan JJ Jr, Gifford ML (1988) Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. I. Rate-level functions. Hearing Res 33:97–114

    Article  Google Scholar 

  • Gummer M, Yates GK, Johnstone BM (1988) Modulation transfer functions of efferent neurones in the guinea pig cochlea. Hearing Res 36:41–52

    Article  CAS  Google Scholar 

  • Hackney CM, Osen KK, Kolston J (1990) Anatomy of the cochlear nuclear complex of the guinea pig. Anat Embryol 182:123–149

    CAS  PubMed  Google Scholar 

  • Ito J, Honjo I (1988) Electrophysiological and HRP studies of the direct afferent inputs from the cochlear nuclei to the tensor tympani muscle motoneurons in the cat. Acta Otolaryngol 105:292–296

    CAS  PubMed  Google Scholar 

  • Itoh K, Nomura S, Konishi A, Yasui Y, Sugimoto T, Muzion N (1986) A morphological evidence of direct connections from the cochlear nuclei to tensor tympani motoneurons in the cat: a possible afferent limb of the acoustic middle ear reflex pathways. Brain Res 375:214–219

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Palmer AR, Winter IM (1996) Frequency extent of two-tone facilitation in onset units in the ventral cochlear nucleus. J Neurophysiol 75:380–395

    CAS  PubMed  Google Scholar 

  • Kawase T, Delgutte B, Liberman MC (1993) Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones. J Neurophysiol 70:2533–2549

    CAS  PubMed  Google Scholar 

  • Kiang NYS, Rho JM, Northrop CC, Liberman MC, Ryugo DK (1982) Hair-cell innervation by spiral ganglion cells in adult cats. Science 217:175–177

    CAS  PubMed  Google Scholar 

  • Kim DO (1986) Active and nonlinear cochlear biomechanics and the role of outer-hair-cell subsystem in the mammalian auditory system. Hearing Res 22:105–114

    Article  CAS  Google Scholar 

  • Kobler JB, Vacher SR, Guinan JJ Jr (1987) The recruitment order of stapedius motoneurons in the acoustic reflex varies with sound laterality. Brain Res 425:372–375

    Article  CAS  PubMed  Google Scholar 

  • Kobler JB, Guinan JJ Jr, Vacher SR, Norris BE (1992) Acoustic reflex frequency selectivity in single stapedius motoneurons of the cat. J Neurophysiol 68:807–817

    CAS  PubMed  Google Scholar 

  • Kujawa S, Liberman MC (2001) Effects of olivocochlear feedback on distortion product otoacoustic emissions in guinea pig. J Assoc Res Otolaryngol 2:268–278

    CAS  PubMed  Google Scholar 

  • Liberman MC (1988) Response properties of cochlear efferent neurons: Monaural vs binaural stimulation and the effects of noise. J Neurophysiol 60:1779–1798

    CAS  PubMed  Google Scholar 

  • Liberman MC, Brown MC (1986) Physiology and anatomy of single olivocochlear neurons in the cat. Hearing Res 24:17–36

    Article  CAS  Google Scholar 

  • Liberman MC, Puria S, Guinan JJ Jr (1996) The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1–f2 distortion product otoacoustic emission. J Acoust Soc Am 99:3572–3584

    CAS  PubMed  Google Scholar 

  • McCue MP, Guinan JJ Jr (1988) Anatomical and functional segregation in the stapedius motoneuron pool of the cat. J Neurophysiol 60:1160–1180

    CAS  PubMed  Google Scholar 

  • Melcher JR, Knudson IM, Fullerton BC, Guinan JJ Jr, Norris BE, Kiang NYS (1996) Generators of the brainstem auditory evoked potential in cat I: An experimental approach to their identification. Hearing Res 93:1-27

    Article  CAS  Google Scholar 

  • Mugnaini E, Warr WB, Osen KK (1980) Distribution and light microscopic features of granule cells in the cochlear nucleus of cat, rat, and mouse. J Comp Neurol 191:581–606

    CAS  PubMed  Google Scholar 

  • Mulders WHAM, Robertson D (2000a) Evidence for direct cortical innervation of medial olivocochlear neurones in rats. Hearing Res 144:65–72

    Article  CAS  Google Scholar 

  • Osen KK (1969) Cytoarchitecture of the cochlear nuclei in the cat. J Comp Neurol 136:453–484

    CAS  PubMed  Google Scholar 

  • Rajan R (1988) Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. I. Dependence on electrical stimulation parameters. J Neurophysiol 60:549–568

    CAS  PubMed  Google Scholar 

  • Reiter ER, Liberman MC (1995) Efferent mediated protection from acoustic overexposure: relation to “slow” effects of olivocochlear stimulation. J Neurophysiol 73:506–514

    CAS  PubMed  Google Scholar 

  • Rhode WS, Greenberg S (1992) Physiology of the cochlear nuclei. In: Popper AN, Fay RR (eds) The mammalian auditory pathway: neurophysiology. Springer, New York, pp 94–152

  • Rhode WS, Oertel D, Smith PH (1983) Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus. J Comp Neurol 213:448–463

    CAS  PubMed  Google Scholar 

  • Rhode WW, Kettner RE (1987) Physiological study of neurons in the dorsal and posteroventral cochlear nucleus of the unanesthetized cat. J Neurophysiol 57:414–442

    CAS  PubMed  Google Scholar 

  • Robertson D (1984) Horseradish peroxidase injection of physiologically characterized afferent and efferent neurons in the guinea pig spiral ganglion. Hearing Res 15:113–121

    Article  CAS  Google Scholar 

  • Robertson D, Gummer M (1985) Physiological and morphological characterization of efferent neurons in the guinea pig cochlea. Hearing Res 20:63–77

    Article  CAS  Google Scholar 

  • Robertson D, Winter IM (1988) Cochlear nucleus inputs to olivocochlear neurones revealed by combined anterograde and retrograde labelling in the guinea pig. Brain Res 462:47–55

    Article  CAS  PubMed  Google Scholar 

  • Robertson D, Sellick PM, Patuzzi R (1999) The continuing search for outer hair cell afferents in the guinea pig spiral ganglion. Hearing Res 136:151–158

    Article  CAS  Google Scholar 

  • Rouiller EM, Ryugo DK (1984) Intracellular marking of physiologically characterized cells in the ventral cochlear nucleus of the cat. J Comp Neurol 225:167–186

    CAS  PubMed  Google Scholar 

  • Rouiller EM, Capt M, Dolivo M, Ribaupierre F de (1986) Tensor tympani reflex pathways studied with retrograde horseradish peroxidase and transneuronal viral tracing techniques. Neurosci Lett 72:247–252

    Article  CAS  PubMed  Google Scholar 

  • Schofield BR, Cant NB (1996) Origins and targets of commissural connections between the cochlear nuclei in guinea pigs. J Comp Neurol 375:128–146

    Article  CAS  PubMed  Google Scholar 

  • Spoendlin H (1971) Degeneration behaviour of the cochlear nerve. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 200:275–291

    CAS  PubMed  Google Scholar 

  • Thompson AM, Thompson GC (1991) Posteroventral cochlear nucleus projections to olivocochlear neurons. J Comp Neurol 303:267–285

    CAS  PubMed  Google Scholar 

  • Vacher SR, Guinan JJ Jr, Kober JB (1989) Intracellularly labeled stapedius-motoneuron cell bodies in the cat are spatially organized according to their physiologic responses. J Comp Neurol 289:401–415

    CAS  PubMed  Google Scholar 

  • Warr WB (1969) Fiber degeneration following lesions in the posteroventral cochlear nucleus of the cat. Exp Neurol 23:140–155

    CAS  PubMed  Google Scholar 

  • Warr WB (1992) Organization of olivocochlear efferent systems in mammals. In: Webster DB, Popper AN, Fay RR (eds) The mammalian auditory pathway: neuroanatomy. Springer, New York, pp 410–448

  • Wenthold RJ (1987) Evidence for a glycinergic pathway connecting the two cochlear nuclei: an immunohistochemical and retrograde transport study. Brain Res 415:183–187

    Article  CAS  PubMed  Google Scholar 

  • Wiederhold ML, Kiang NYS (1970) Effects of electric stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J Acoust Soc Am 48:950–965

    CAS  PubMed  Google Scholar 

  • Winslow R, Sachs MB (1987) Effect of electrical stimulation of the crossed olivocochlear bundle on auditory nerve response to tones in noise. J Neurophysiol 57:1002–1021

    CAS  PubMed  Google Scholar 

  • Ye Y, Machado DG, Kim DO (2000) Projection of the marginal shell of the anteroventral cochlear nucleus to olivocochlear neurons in the cat. J Comp Neurol 420:127–138

    Article  CAS  PubMed  Google Scholar 

  • Young ED, Robert J-M, Shofner WP (1988) Regularity and latency of units in ventral cochlear nucleus: implications for unit classification and generation of response properties. J Neurophysiol 60:1-29

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. M. C. Liberman for comments on the manuscript and Dr. Wen Xu for technical assistance. Supported by NIDCD grants DC 01089 and DC 0119, and a grant from the Triological Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, M.C., de Venecia, R.K. & Guinan, J.J. Responses of medial olivocochlear neurons. Exp Brain Res 153, 491–498 (2003). https://doi.org/10.1007/s00221-003-1679-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1679-y

Keywords

Navigation