Skip to main content
Log in

Basal ganglia network mediates the control of movement amplitude

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In the present study we address the hypothesis that the basal ganglia are specifically involved in the planning of movement amplitude (or related covariates). This prediction has often been put forward based on the observation that Parkinson's disease (PD) patients exhibit hypokinesia. A close examination of the literature shows, however, that this commonly reported clinical symptom is not consistently echoed by experimental observations. When required to point to visual targets in the absence of vision of the moving limb, PD subjects exhibit various patterns of inaccuracy, including hypometria, hypermetria, systematic direction bias, or direction-dependent errors. They have even been shown to be as accurate as healthy, age-matched subjects. The main aim of the current study is to address the origin of these inconsistencies. To this end, we required nine patients presenting with advanced PD and 15 age-matched control subjects to perform planar reaching movements to visual targets. Eight targets were presented in equally spaced directions around a circle centered on the hand's starting location. Based on a previously validated parsing procedure, end-point errors were segmented into localization and planning errors. Localization errors refer to the existence of systematic biases in the estimation of the initial hand location. These biases can potentially transform a simple pattern of pure amplitude errors into a complex pattern involving both amplitude and direction errors. Results indicated that localization errors were different in the PD patients and the control subjects. This is not surprising knowing both that proprioception is altered in PD patients and that the ability to locate the hand at rest relies mainly on the proprioceptive sense, even when vision is available. Unlike normal subjects, localization errors in PD were idiosyncratic, lacking a consistent pattern across subjects. When the confounding effect of initial hand localization errors was canceled, we found that end-point errors were only due to the implementation of an underscaled movement gain (15%), without direction bias. Interestingly, the level of undershoot was found to increase with the severity of the disease (inferred from the Unified Parkinson's Disease Rating Scale, UPDRS, motor score). We also observed that movement variability was amplified (32%), but only along the main movement axis (extent variability). Direction variability was not significantly different in the patient population and the control group. When considered together, these results support the idea that the basal ganglia are specifically involved in the control of movement amplitude (or of some covariates). We propose that this structure participates in extent planning by modulating cortical activity and/or the tuning of the spinal interneuronal circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2. a
Fig. 3.
Fig. 4.
Fig. 5. a
Fig. 6. a
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  • Adamovich SV, Berkinblit MB, Hening W, Sage J, Poizner H (2001) The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson's disease. Neuroscience 104:1027–1041

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey. J Neurophysiol 64:164–178

    CAS  PubMed  Google Scholar 

  • Anderson ME, Turner RS (1991) A quantitative analysis of pallidal discharge during targeted reaching movement in the monkey. Exp Brain Res 86:623–632

    CAS  PubMed  Google Scholar 

  • Atkeson CG, Hollerbach JM (1985) Kinematic features of unrestrained vertical arm movements. J Neurosci 5:2318–2330

    CAS  PubMed  Google Scholar 

  • Bard C, Turrell Y, Fleury M, Teasdale N, Lamarre Y, Martin O (1999) Deafferentation and pointing with visual double-step perturbations. Exp Brain Res 125:410–416

    CAS  PubMed  Google Scholar 

  • Beers RJ van, Sittig AC, Denier van der Gon JJ (1996) How humans combine simultaneous proprioceptive and visual information. Exp Brain Res 111:253–261

    PubMed  Google Scholar 

  • Beers RJ van, Sittig AC, Denier van der Gon JJ (1998) The precision of proprioceptive position sense. Exp Brain Res 122:367–377

    PubMed  Google Scholar 

  • Berardelli A, Dick JP, Rothwell JC, Day BL, Marsden CD (1986) Scaling of the size of the first agonist EMG burst during rapid wrist movements in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry 49:1273–1279

    CAS  PubMed  Google Scholar 

  • Berardelli A, Hallett M, Rothwell JC et al. (1996) Single-joint rapid arm movements in normal subjects and in patients with motor disorders. Brain 119:661–674

    PubMed  Google Scholar 

  • Berardelli A, Rothwell JC, Thompson PD, Hallett M (2001) Pathophysiology of bradykinesia in Parkinson's disease. Brain 124:2131–2146

    Article  CAS  PubMed  Google Scholar 

  • Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81:39–60

    CAS  PubMed  Google Scholar 

  • Bock O (1992) Adaptation of aimed arm movements to sensorimotor discordance: evidence for direction-independent gain control. Behav Brain Res 51:41–50

    CAS  PubMed  Google Scholar 

  • Bock O, Arnold K (1992) Motor control prior to movement onset: Preparatory mechanisms for pointing at visual target. Exp Brain Res 90:209–216

    CAS  PubMed  Google Scholar 

  • Bock O, Arnold K (1993) Error accumulation and error correction in sequential pointing movements. Exp Brain Res 95:111–117

    CAS  PubMed  Google Scholar 

  • Bock O, Eckmiller R (1986) Goal-directed arm movements in absence of visual guidance: evidence for amplitude rather than position control. Exp Brain Res 62:451–458

    CAS  PubMed  Google Scholar 

  • Bock O, Eversheim U (2000) The mechanisms of movement preparation: a precuing study. Behav Brain Res 108:85–90

    CAS  PubMed  Google Scholar 

  • Bock O, Dose M, Ott D, Eckmiller R (1990) Control of arm movements ina two-dimensional pointing task. Exp Brain Res 40:247–250

    Article  CAS  Google Scholar 

  • Brotchie P, Iansek R, Horne MK (1991) Motor function of the monkey globus pallidus. 1. Neuronal discharge and parameters of movement. Brain 114:1667–1683

    PubMed  Google Scholar 

  • Carrozzo M, McIntyre J, Zago M, Lacquaniti F (1999) Viewer-centered and body-centered frames of reference in direct visuomotor transformations. Exp Brain Res 129:201–10

    CAS  PubMed  Google Scholar 

  • Crutcher MD, DeLong MR (1984) Single cell studies of the primate putamen. II. Relations to direction of movement and pattern of muscular activity. Exp Brain Res 53:244–258

    CAS  PubMed  Google Scholar 

  • Deiber MP, Ibanez V, Sadato N, Hallett M (1996) Cerebral structures participating in motor preparation in humans: a positron emission tomography study. J Neurophysiol 75:233–247

    CAS  PubMed  Google Scholar 

  • DeLong MR, Crutcher MD, Georgopoulos AP (1985) Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol 53:530–543

    CAS  PubMed  Google Scholar 

  • Demirci M, Grill S, McShane L, Hallett M (1997) A mismatch between kinesthetic and visual perception in Parkinson's disease. Ann Neurol 41:781–788

    Google Scholar 

  • Denny-Brown D (1968) Clinical symptomatology of diseases of basal ganglia. In: Vinken P, Bruyn G (eds) Handbook of clinical neurology. Elsevier, New York, 6:133–171

  • Desmurget M, Jordan M, Prablanc C, Jeannerod M (1997) Constrained and unconstrained movements involve different control strategies. J Neurophysiol 77:1644–1650

    CAS  PubMed  Google Scholar 

  • Desmurget M, Pélisson D, Rossetti Y, Prablanc C (1998) From eye to hand: planning goal-directed movements. Neurosci Biobehav Rev 22:761–788

    CAS  PubMed  Google Scholar 

  • Desmurget M, Prablanc C, Jordan MI, Jeannerod M (1999) Are reaching movements planned to be straight and invariant in the extrinsic space: kinematic comparison between compliant and unconstrained motions. Q J Exp Psychol A 52:981–1020

    Article  Google Scholar 

  • Desmurget M, Vindras P, Gréa H, Viviani P, Grafton ST (2000) Proprioception does not quickly drift during visual occlusion. Exp Brain Res 134:363–377

    CAS  PubMed  Google Scholar 

  • Desmurget M, Gréa H, Grethe JS, Prablanc C, Alexander GE, Grafton ST (2001) Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study. J Neurosci 21:2919–2928

    CAS  PubMed  Google Scholar 

  • Favilla M, Hening W, Ghez C (1989) Trajectory control in targeted force impulses. VI. Independent specification of response amplitude and direction. Exp Brain Res 75:280–294

    CAS  PubMed  Google Scholar 

  • Filion M, Tremblay L, Bedard PJ (1988) Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Res 444:165–176

    CAS  PubMed  Google Scholar 

  • Flanders M, Helms-Tillery SI, Soechting JF (1992) Early stages in sensori-motor transformations. Behav Brain Sci 15:309–362

    Google Scholar 

  • Flash T, Inzelberg R, Schechtman E, Korczyn AD (1992) Kinematic analysis of upper limb trajectories in Parkinson's disease. Exp Neurol 118:215–226

    CAS  PubMed  Google Scholar 

  • Flowers KA (1976) Visual "closed-loop" and "open-loop" characteristics of voluntary movement in patients with parkinsonism and intention tremor. Brain 99:269–310

    CAS  PubMed  Google Scholar 

  • Georgopoulos AP (1995) Current issues in directional motor control. Trends Neurosci 18:506–510

    CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Delong MR, Crutcher MD (1983) Relations between parameters of step-tracking movements and single cells discharge in the globus pallidus and subthalamic nucleus of the behaving monkey. J Neurosci 3:1586–1598

    CAS  PubMed  Google Scholar 

  • Ghez C, Favilla M, Ghilardi MF, Gordon J, Bermejo R, Pullman S (1997) Discrete and continuous planning of hand movements and isometric force trajectories. Exp Brain Res 115:217–233

    CAS  PubMed  Google Scholar 

  • Ghilardi MF, Alberoni M, Rossi M, Franceschi M, Mariani C, Fazio F (2000) Visual feedback has differential effects on reaching movements in Parkinson's and Alzheimer's disease. Brain Res 876:112–123

    Article  CAS  PubMed  Google Scholar 

  • Godaux E, Koulischer D, Jacquy J (1992) Parkinsonian bradykinesia is due to depression in the rate of rise of muscle activity. Ann Neurol 31:93–100

    CAS  PubMed  Google Scholar 

  • Goodale MA, Pélisson D, Prablanc C (1986) Large adjustments in visually guided reaching do not depend on vision of the hand and perception of target displacement. Nature 320:748–750

    CAS  PubMed  Google Scholar 

  • Gordon J, Ghilardi MF, Ghez C (1994) Accuracy of planar reaching movements. 1. Independence of direction and extent variability. Exp Brain Res 99:97–111

    CAS  PubMed  Google Scholar 

  • Hallett M, Khoshbin S (1980) A physiological mechanism of bradykinesia. Brain 103:301–314

    CAS  PubMed  Google Scholar 

  • Hamada I, DeLong MR, Mano N (1990) Activity of identified wrist-related pallidal neurons during step and ramp wrist movements in the monkey. J Neurophysiol 64:1892–1906

    CAS  PubMed  Google Scholar 

  • Hays WL (1988) Statistics, 4th edn. Holt, Rinehart and Winton, Fort Worth

  • Higgins JR, Angel RW (1970) Correction of tracking errors without sensory feedback. J Exp Psychol 84:412–416

    CAS  PubMed  Google Scholar 

  • Jaeger RJ, Agarwal GC, Gottlieb GL (1979) Directional errors of movement and their correction in a discrete tracking task. J Mot Behav 11:123–133

    Google Scholar 

  • Jaric S, Corcos DM, Latash M (1992) Effects of practice on final position reproduction. Exp Brain Res 91:129–134

    CAS  PubMed  Google Scholar 

  • Jeannerod M (1988) The neural and behavioral organization of goal-directed movements. Clarendon, Oxford

  • Jobst EE, Melnick ME, Byl NN, Dowling GA, Aminoff MJ (1997) Sensory perception in Parkinson disease. Arch Neurol 54:450–454

    CAS  PubMed  Google Scholar 

  • Johnson MT, Kipnis AN, Lee MC, Loewenson RB, Ebner TJ (1991) Modulation of the stretch reflex during volitional sinusoidal tracking in Parkinson's disease. Brain 114:443–460

    PubMed  Google Scholar 

  • Johnson RA, Wichern DW (1982) Applied multivariate statistical analysis. Prentice Hall, Englewood Cliffs, NJ

  • Kalaska JF, Crammond DJ (1992) Cerebral cortical mechanisms of reaching movements. Science 255:1517–1523

    CAS  PubMed  Google Scholar 

  • Klockgether T, Dichgans J (1994) Visual control of arm movement in Parkinson's disease. Mov Disord 9:48–56

    CAS  PubMed  Google Scholar 

  • Klockgether T, Borutta M, Rapp H, Spieker S, Dichgans J (1995) A defect of kinesthesia in Parkinson's disease. Mov Disord 10:460–465

    CAS  PubMed  Google Scholar 

  • Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci 20:8916–8924

    CAS  PubMed  Google Scholar 

  • Lawrence AD (2000) Error correction and the basal ganglia: similar computations for action, cognition and emotion? Trends Cogn Sci 4:365–367

    PubMed  Google Scholar 

  • McIntyre J, Stratta F, Droulez J, Lacquaniti F (2000) Analysis of pointing errors reveals properties of data representations and coordinate transformations within the central nervous system. Neural Comput 12:2823–2855

    Article  CAS  PubMed  Google Scholar 

  • Messier J, Kalaska JF (1997) Differential effect of task conditions on errors of direction and extent of reaching movements. Exp Brain Res 115:469–478

    CAS  PubMed  Google Scholar 

  • Meunier S, Pol S, Houeto JL, Vidailhet M (2000) Abnormal reciprocal inhibition between antagonist muscles in Parkinson's disease. Brain 123:1017–1026

    Article  PubMed  Google Scholar 

  • Mink JW, Thach WT (1991) Basal ganglia motor control. II. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters. J Neurophysiol 65:301–329

    CAS  PubMed  Google Scholar 

  • Moore A (1987) Impaired sensorimotor integration in Parkinsonism and dyskinesia: a role for corollary discharges? J Neurol Neurosurg Psychiatry 50:544–552

    CAS  PubMed  Google Scholar 

  • Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42:223–227

    CAS  PubMed  Google Scholar 

  • Morita H, Shindo M, Ikeda S, Yanagisawa N (2000) Decrease in presynaptic inhibition on heteronymous monosynaptic Ia terminals in patients with Parkinson's disease. Mov Disord 15:830–834

    Article  CAS  PubMed  Google Scholar 

  • Nambu A, Yoshida S, Jinnai K (1990) Discharge patterns of pallidal neurons with input from various cortical areas during movement in the monkey. Brain Res 519:183–191

    Article  CAS  PubMed  Google Scholar 

  • Pélisson D, Prablanc C, Goodale MA, Jeannerod M (1986) Visual control of reaching movements without vision of the limb. II. Evidence of fast unconscious processes correcting the trajectory of the hand to the final position of a double step stimulus. Exp Brain Res 62:303–311

    PubMed  Google Scholar 

  • Petit H, Allain H, Vermersch P (1995) La maladie de Parkinson. Masson, Paris

  • Pfann KD, Buchman AS, Comella CL, Corcos DM (2001) Control of movement distance in Parkinson's disease. Mov Disord 16:1048–1065

    Article  PubMed  Google Scholar 

  • Phillips JG, Martin KE, Bradshaw JL, Iansek R (1994) Could bradykinesia in Parkinson's disease simply be compensation? J Neurol 241:439–447

    PubMed  Google Scholar 

  • Pine ZM, Krakauer JW, Gordon J, Ghez C (1996) Learning of scaling factors and reference axes for reaching movements. Neuroreport 7:2357–2361

    CAS  PubMed  Google Scholar 

  • Prablanc C, Martin O (1992) Automatic control during hand reaching at undetected two-dimensional target displacements. J Neurophysiol 67:455–69

    CAS  PubMed  Google Scholar 

  • Redon C, Hay L, Velay JL (1991) Proprioceptive control of goal directed movements in man studied by means of vibratory muscle tendon stimulation. J Mot Behav 23:101–108

    Google Scholar 

  • Rosenbaum DA (1980) Human movement initiation: specification of arm direction and extent. J Exp Psychol Gen 109:444–474

    CAS  PubMed  Google Scholar 

  • Rossetti Y, Desmurget M, Prablanc C (1995) Vectorial coding of movement: Vision proprioception or both? J Neurophysiol 74:457–463

    CAS  PubMed  Google Scholar 

  • Sainburg RL, Lateiner JE, Latash ML, Bagesteiro LB (2003) Effects of altering initial position on movement direction and extent. J Neurophysiol 89:401–415

    PubMed  Google Scholar 

  • Sanes JN (1985) Information processing deficits in Parkinson's disease during movement. Neuropsychologia 23:381–392

    Article  CAS  PubMed  Google Scholar 

  • Schneider JS, Diamond SG, Markham CH (1987) Parkinson's disease: sensory and motor problems in arms and hands. Neurology 37:951–956

    CAS  PubMed  Google Scholar 

  • Sheridan MR, Flowers KA (1990) Movement variability and bradykinesia in Parkinson's disease. Brain 113:1149–1161

    PubMed  Google Scholar 

  • Siebner HR, Limmer C, Peinemann A, Bartenstein P, Drzezga A, Conrad B (2001) Brain correlates of fast and slow handwriting in humans: a PET-performance correlation analysis. Eur J Neurosci 14:726–736

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Brandt J, Shadmehr R (2000) Motor disorder in Huntington's disease begins as a dysfunction in error feedback control. Nature 403:544–549

    Article  PubMed  Google Scholar 

  • Teasdale N, Phillips J, Stelmach GE (1990) Temporal movement control in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry 53:862–868

    CAS  PubMed  Google Scholar 

  • Turner RS, Anderson ME (1997) Pallidal discharge related to the kinematics of reaching movements in two dimensions. J Neurophysiol 77:1051–1074

    CAS  PubMed  Google Scholar 

  • Turner RS, Grafton ST, Votaw JR, DeLong MR, Hoffman JM (1998) Motor subcircuits mediating the control of movement velocity: a PET study. J Neurophysiol 80:2162–2176

    CAS  PubMed  Google Scholar 

  • Vindras P, Viviani P (1998) Frames of reference and control parameters in visuomanual pointing. J Exp Psychol Hum Percept Perform 24:569–591

    Google Scholar 

  • Vindras P, Viviani P (2002) Altering the visuo-motor gain: evidence that motor plans deal with vector quantities. Exp Brain Res 147:280–295

    Article  PubMed  Google Scholar 

  • Vindras P, Desmurget M, Prablanc C, Viviani P (1998) Pointing errors reflect biases in the perception of the initial hand position. J Neurophysiol 79:3290–3294

    CAS  PubMed  Google Scholar 

  • Wann JP, Ibrahim SF (1992) Does limb proprioception drift? Exp Brain Res 91:162–166

    CAS  PubMed  Google Scholar 

  • Wichmann T, DeLong MR (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6:751–758

    CAS  PubMed  Google Scholar 

  • Won J, Hogan N (1995) Stability properties of human reaching movements. Exp Brain Res 107:125–136

    CAS  PubMed  Google Scholar 

  • Zia S, Cody F, O'Boyle D (2000) Joint position sense is impaired by Parkinson's disease. Ann Neurol 47:218–228

    Google Scholar 

Download references

Acknowledgements

Supported by NIH grants NS33704 and NS37470.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Desmurget.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desmurget, M., Grafton, S.T., Vindras, P. et al. Basal ganglia network mediates the control of movement amplitude. Exp Brain Res 153, 197–209 (2003). https://doi.org/10.1007/s00221-003-1593-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1593-3

Keywords

Navigation