Skip to main content
Log in

Cocaine-induced plasticity in the cerebellum of sensitised mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2015

Abstract

Rationale

Prior research has accumulated a substantial amount of evidence on the ability of cocaine to produce short- and long-lasting molecular and structural plasticity in the corticostriatal-limbic circuitry. However, traditionally, the cerebellum has not been included in the addiction circuitry, even though growing evidence supports its involvement in the behavioural changes observed after repeated drug experiences.

Objectives

In the present study, we explored the ability of seven cocaine administrations to alter plasticity in the cerebellar vermis.

Methods

After six cocaine injections, one injection every 48 h, mice remained undisturbed for 1 month in their home cages. Following this withdrawal period, they received a new cocaine injection of a lower dose. Locomotion, behavioural stereotypes and several molecular and structural cerebellar parameters were evaluated.

Results

Cerebellar proBDNF and mature BDNF levels were both enhanced by cocaine. The high BDNF expression was associated with dendritic sprouting and increased terminal size in Purkinje neurons. Additionally, we found a reduction in extracellular matrix components that might facilitate the subsequent remodelling of Purkinje-nuclear neuron synapses.

Conclusions

Although speculative, it is possible that these cocaine-dependent cerebellar changes were incubated during withdrawal and manifested by the last drug injection. Importantly, the present findings indicate that cocaine is able to promote plasticity modifications in the cerebellum of sensitised animals similar to those in the basal ganglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson CM, Maas LC, Frederick BB, Bendor JT, Spencer TJ, Livni E, Lukas SE, Fischman AJ, Madras BK, Renshaw PF, Kaufman MJ (2006) Cerebellar vermis involvement in cocaine-related behaviors. Neuropsychopharmacology 31:1318–1326

    Article  CAS  PubMed  Google Scholar 

  • Bahi A, Dreyer JL (2008) Overexpression of plasminogen activators in the nucleus accumbens enhances cocaine-, amphetamine- and morphine-induced reward and behavioral sensitization. Genes Brain Behav 7:244–256

    Article  CAS  PubMed  Google Scholar 

  • Bahi A, Boyer F, Chandrasekar V, Dreyer JL (2008) Role of accumbens BDNF and TrkB in cocaine-induced psychomotor sensitisation, conditioned-place preference, and reinstatement in rats. Psychopharmacology (Berl) 199:169–182

    Article  CAS  Google Scholar 

  • Bostan AC, Dum RP, Strick PL (2013) Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci 17:241–254

    Article  PubMed Central  PubMed  Google Scholar 

  • Boudreau AC, Wolf ME (2005) Behavioral sensitisation to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. J Neurosci 25:9144–9151

    Article  CAS  PubMed  Google Scholar 

  • Boudreau AC, Reimers JM, Milovanovic M, Wolf ME (2007) Cell surface AMPA receptors in the rat nucleus accumbens increase during cocaine withdrawal but internalise after cocaine challenge in association with altered activation of mitogen activated protein kinases. J Neurosci 27:10621–10635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown TE, Forquer MR, Cocking DL, Jansen HT, Harding JW, Sorg BA (2007) Role of matrix metalloproteinases in the acquisition and reconsolidation of cocaine-induced conditioned place preference. Learn Mem 14:214–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caldeira MV, Melo CV, Pereira DB, Carvalho R, Correia SS, Backos DS, Carvalho AL, Esteban JA, Duarte CB (2007) Brain-derived neurotrophic factor regulates the expression and synaptic delivery of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. J Biol Chem 282:12619–12628

    Article  CAS  PubMed  Google Scholar 

  • Carbo-Gas M, Vazquez-Sanroman D, Aguirre-Manzo L, Coria-Avila GA, Manzo J, Sanchis-Segura C, Miquel M (2014a) Involving the cerebellum in cocaine-induced memory: pattern of cFos expression in mice trained to acquire conditioned preference for cocaine. Addict Biol 19:61–76

    Article  CAS  PubMed  Google Scholar 

  • Carbo-Gas M, Vazquez-Sanroman D, Gil-Miravet I, De Las Heras-Chanes J, Coria-Avila GA, Manzo J, Sanchis-Segura C, Miquel M (2014b) Cerebellar hallmarks of conditioned preference for cocaine. Physiol Behav 132:24–36

    Article  CAS  PubMed  Google Scholar 

  • Carulli D, Rhodes KE, Brown DJ, Bonnert TP, Pollack SJ, Oliver K, Strata P, Fawcett JW (2006) Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J Comp Neurol 494:559–577

    Article  CAS  PubMed  Google Scholar 

  • Corbit LH, Nie H, Janak PH (2012) Habitual alcohol seeking: time course and the contribution of subregions of the dorsal striatum. Biol Psychiatry 72:389–395

    Article  PubMed Central  PubMed  Google Scholar 

  • Crooks KR, Kleven DT, Rodriguiz RM, Wetsel WC, McNamara JO (2010) TrkB signaling is required for behavioral sensitisation and conditioned place preference induced by a single injection of cocaine. Neuropharmacology 58:1067–1077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Zeeuw CI, Wylie DR, DiGiorgi PL, Simpson JI (1994) Projections of individual Purkinje cells of identified zones in the flocculus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol 15:428–447

    Article  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    Article  CAS  PubMed  Google Scholar 

  • Foscarin S, Ponchione D, Pajaj E, Leto K, Gawlak M, Wilczynski GM, Rossi F, Carulli D (2011) Experience dependent plasticity and modulation of growth regulatory molecules at central synapses. PLoS One 6:e16666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghasemzadeh MB, Mueller C, Vasudevan P (2009) Behavioral sensitisation to cocaine is associated with increased glutamate receptor trafficking to the postsynaptic density after extended withdrawal period. Neuroscience 159:414–426

    Article  CAS  PubMed  Google Scholar 

  • Grant S, London ED, Newlin DB, Villemagne VL, Liu X, Contoreggi C, Phillips RL, Kimes AS, Margolin A (1996) Activation of memory circuits during cue elicited cocaine craving. Proc Natl Acad Sci U S A 93:12040–12045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grimm JW, Lu L, Hayashi T, Hope BT, Su TP, Shaham Y (2003) Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci 23:742–747

    CAS  PubMed  Google Scholar 

  • Hansel C (2005) When the B-team runs plasticity: GluR2 receptor trafficking in cerebellar long-term potentiation. Proc Natl Acad Sci U S A 102:18245–18246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang CC, Yeh CM, Wu MY, Chang AY, Chan JY, Chan SH, Hsu KS (2011) Cocaine withdrawal impairs metabotropic glutamate receptor-dependent long-term depression in the nucleus accumbens. J Neurosci 31:4194–4203

    Article  CAS  PubMed  Google Scholar 

  • Jeanneteau F, Deinhardt K, Miyoshi G, Bennett AM, Chao MV (2010) The MAP kinase phosphatase MKP-1 regulates BDNF-induced axon branching. Nat Neurosci 13:1373–1379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kafitz KW, Rose CR, Thoenen H, Konnerth A (1999) Neurotrophin-evoked rapid excitation through TrkB receptors. Nature 401:918–921

    Article  CAS  PubMed  Google Scholar 

  • Kakegawa W, Yuzaki M (2005) A mechanism underlying AMPA receptor trafficking during cerebellar long-term potentiation. Proc Natl Acad Sci U S A 102:17846–17851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kovalchuk Y, Hanse E, Kafitz KW, Konnerth A (2002) Postsynaptic induction of BDNF-mediated long-term potentiation. Science 295:1729–1734

    Article  CAS  PubMed  Google Scholar 

  • Lau AG, Irier HA, Gu J, Tian D, Ku L, Liu G, Xia M, Fritsch B, Zheng JQ, Dingledine R, Xu B, Lu B, Feng Y (2010) Distinct 3′UTRs differentially regulate activity-dependent translation of brain-derived neurotrophic factor (BDNF). Proc Natl Acad Sci U S A 107:15945–15950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li X, Wolf ME (2014) Multiple faces of BDNF in cocaine addiction. Behav Brain Res 279:240–254

    Article  PubMed  Google Scholar 

  • Li X, DeJoseph MR, Urban JH, Bahi A, Dreyer JL, Meredith GE, Ford KA, Ferrario CR, Loweth JA, Wolf ME (2013) Different roles of BDNF in nucleus accumbens core versus shell during the incubation of cue-induced cocaine craving and its long-term maintenance. J Neurosci 33:1130–1142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Loweth JA, Tseng KY, Wolf ME (2014) Adaptations in AMPA receptor transmission in the nucleus accumbens contributing to incubation of cocaine craving. Neuropharmacology 76:287–300

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Figurov A (1997) Role of neurotrophins in synapse development and plasticity. Rev Neurosci 8:1–12

    Article  CAS  PubMed  Google Scholar 

  • Maiya R, Zhou Y, Norris EH, Kreek MJ, Strickland S (2009) Tissue plasminogen activator modulates the cellular and behavioral response to cocaine. Proc Natl Acad Sci U S A 106:1983–1988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mash DC, Ffrench-Mullen J, Adi N, Qin Y, Buck A, Pablo J (2007) Gene expression in human hippocampus from cocaine abusers identifies genes which regulate extracellular matrix remodeling. PLoS One 2(11):e1187

    Article  PubMed Central  PubMed  Google Scholar 

  • McGinty JF, Whitfield TW Jr, Berglind WJ (2010) Brain-derived neurotrophic factor and cocaine addiction. Brain Res 1314:183–193

    Article  CAS  PubMed  Google Scholar 

  • Miquel M, Font L, Sanchis-Segura C, Aragon CMG (2003) Neonatal administration of monosodium glutamate prevents the development of ethanol-, but not psychostimulant-induced, sensitization: a putative role of the arcuate nucleus. Eur J Neurosci 17:2163–2170

    Article  PubMed  Google Scholar 

  • Miquel M, Toledo R, García LI, Coria-Avila GA, Manzo J (2009) Why should we keep the cerebellum in mind when thinking about addiction? Curr Drug Abuse Rev 2:26–40

    Article  CAS  PubMed  Google Scholar 

  • Moulton EA, Elman I, Becerra LR, Goldstein RZ, Borsook D (2014) The cerebellum and addiction: insights gained from neuroimaging research. Addict Biol 19:317–331

    Article  PubMed Central  PubMed  Google Scholar 

  • Murray JE, Dilleen R, Pelloux Y, Economidou D, Dalley JW, Belin D, Everitt BJ (2013) Increased impulsivity retards the transition to dorsolateral striatal dopamine control of cocaine seeking. Biol Psychiatry 76:15–22

    Article  PubMed  Google Scholar 

  • Narisawa-Saito M, Iwakura Y, Kawamura M, Araki K, Kozaki S, Takei N, Nawa H (2002) Brain-derived neurotrophic factor regulates surface expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptors by enhancing the N-ethylmaleimide-sensitive factor/GluR2 interaction in devel- oping neocortical neurons. J Biol Chem 277:40901–40910

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ (2004) Molecular mechanisms of drug addiction. Neuropharmacology 47:24–32

    Article  CAS  PubMed  Google Scholar 

  • Ng T, Chand D, Song L, Al Chawaf A, Watson JD, Boutros PC, Belsham DD, Lovejoy DA (2012) Identification of a novel brain derived neurotrophic factor (BDNF)-inhibitory factor: regulation of BDNF by teneurin C-terminal associated peptide (TCAP)-1 in immortalised embryonic mouse hypothalamic cells. Regul Pept 10:79–89

    Article  Google Scholar 

  • Petralia RS, Wang YX, Mayat E, Wenthold RJ (1997) Glutamate receptor subunit 2-selective antibody shows a differential distribution of calcium-impermeable AMPA receptors among populations of neurons. J Comp Neurol 385:456–476

    Article  CAS  PubMed  Google Scholar 

  • Piazza PV, Deroche-Gamonet V (2013) A multistep general theory of transition to addiction. Psychopharmacology (Berl) 229:387–413

    Article  CAS  Google Scholar 

  • Ripley TL, Rocha BA, Oglesby MW, Stephens DN (1999) Increased sensitivity to cocaine, and over-responding during cocaine self-administration in tPA knockout mice. Brain Res 826:117–127

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Gorny G, Mitton E, Kolb B (2001) Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse 39:257–266

    Article  CAS  PubMed  Google Scholar 

  • Slaker M, Churchill L, Todd RP, Blacktop JM, Zuloaga DG, Raber J, Darling RA, Brown TE, Sorg BA (2015) Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine-induced conditioned place preference memory. J Neurosci 35:4190–4202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stamenkovic I (2003) Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol 200:448–464

    Article  CAS  PubMed  Google Scholar 

  • Strata P, Scelfo B, Sacchetti B (2011) Involvement of cerebellum in emotional behavior. Physiol Res 60:S39–S48

    PubMed  Google Scholar 

  • Suzuki L, Coulon P, Sabel-Goedknegt EH, Ruigrok TMH (2012) Organization of cerebral projections to identified cerebellar zones in the posterior cerebellum of the rat. J Neurosci 32:10854–10869

    Article  CAS  PubMed  Google Scholar 

  • Tanaka J, Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davies GC, Kasai H (2008) Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 319:1683–1687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van den Oever MC, Lubbers BR, Goriounova NA, Li KW, Van der Schors RC, Loos M, Riga D, Wiskerke J, Binnekade R, Stegeman M, Schoffelmeer AN, Mansvelder HD, Smit AB, De Vries TJ, Spijker S (2010) Extracellular matrix plasticity and GABAergic inhibition of prefrontal cortex pyramidal cells facilitates relapse to heroin seeking. Neuropsychopharmacology 35:2120–2133

    Article  PubMed Central  PubMed  Google Scholar 

  • Vazquez-Sanroman D, Letto K, Cerezo-Garcia M, Carbo-Gas M, Sanchis-Segura C, Carulli D, Rossi F, Miquel M (2015) The cerebellum on cocaine: the cerebellum on cocaine: plasticity and metaplasticity. Addict Biol. doi:10.1111/adb.12223

    PubMed  Google Scholar 

  • Willuhn I, Burgeno LM, Everitt BJ, Phillips PE (2012) Hierarchical recruitment of phasic dopamine signalling in the striatum during the progression of cocaine use. Proc Natl Acad Sci U S A 109:20703–20708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wright JW, Harding JW (2009) Contributions of matrix metalloproteinases to neural plasticity, habituation, associative learning and drug addiction. Neural Plast. doi:10.1155/2009/579382

    PubMed Central  PubMed  Google Scholar 

  • Xue YX, Xue LF, Liu JF, He J, Deng JH, Sun SC, Han HB, Luo YX, Xu LZ, Wu P, Lu L (2014) Depletion of perineuronal nets in the amygdala to enhance the erasure of drug memories. J Neurosci 34:6647–6658

    Article  CAS  PubMed  Google Scholar 

  • Yalachkov Y, Kaiser J, Naumer MJ (2010) Sensory and motor aspects of addiction. Behav Brain Res 207:215–222

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants and fellowships: Ministerio de Economía y Competitividad [PSI2011- 29181], FPI-PREDOC2009/05, FPU12/04059, PPF 2013 (13I087.01/1) and UJI (P1.1B2011-42).

Conflict of interest

The authors of the present manuscript declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Miquel.

Additional information

In memoriam of Ferdinando Rossi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 606 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazquez-Sanroman, D., Carbo-Gas, M., Leto, K. et al. Cocaine-induced plasticity in the cerebellum of sensitised mice. Psychopharmacology 232, 4455–4467 (2015). https://doi.org/10.1007/s00213-015-4072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4072-1

Keywords

Navigation