Skip to main content

Advertisement

Log in

Pregnenolone sulfate as a modulator of synaptic plasticity

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The neurosteroid pregnenolone sulfate (PregS) acts as a cognitive enhancer and modulator of neurotransmission, yet aligning its pharmacological and physiological effects with reliable measurements of endogenous local concentrations and pharmacological and therapeutic targets has remained elusive for over 20 years.

Objectives

New basic and clinical research concerning neurosteroid modulation of the central nervous system (CNS) function has emerged over the past 5 years, including important data involving pregnenolone and various neurosteroid precursors of PregS that point to a need for a critical status update.

Results

Highly specific actions of PregS affecting excitatory N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic transmission and the pharmacological effects of PregS on various receptors and ion channels are discussed. The discovery of a high potency (nanomolar) signal transduction pathway for PregS-induced NMDAR trafficking to the cell surface via a Ca2+- and G protein-coupled receptor (GPCR)-dependent mechanism and a potent (EC50 ~ 2 pM) direct enhancement of intracellular Ca2+ levels is discussed in terms of its agonist effects on long-term potentiation (LTP) and memory. Lastly, preclinical and clinical studies assessing the promnestic effects of PregS and pregnenolone toward cognitive dysfunction in schizophrenia, and altered serum levels in epilepsy and alcohol dependence, are reviewed.

Conclusions

PregS is present in human and rodent brain at physiologically relevant concentrations and meets most of the criteria for an endogenous neurotransmitter/neuromodulator. PregS likely plays a significant role in modulation of glutamatergic excitatory synaptic transmission underlying learning and memory, yet the molecular target(s) for its action awaits identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akan P, Kizildag S, Ormen M, Genc S, Oktem MA, Fadiloglu M (2009) Pregnenolone protects the PC-12 cell line against amyloid beta peptide toxicity but its sulfate ester does not. Chem Biol Interact 177:65–70

    CAS  PubMed  Google Scholar 

  • Akk G, Li P, Bracamontes J, Reichert DE, Covey DF, Steinbach JH (2008) Mutations of the GABA-A receptor alpha1 subunit M1 domain reveal unexpected complexity for modulation by neuroactive steroids. Mol Pharmacol 74:614–627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Babalola PA, Fitz NF, Gibbs RB, Flaherty P, Li PK, Johnson DA (2012) The effect of the steroid sulfatase inhibitor (p-O-sulfamoyl)-tetradecanoyl tyramine (DU-14) on learning and memory in rats with selective lesion of septal-hippocampal cholinergic tract. Neurobiol Learn Mem 98:303–310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baker C, Sturt BL, Bamber BA (2010) Multiple roles for the first transmembrane domain of GABAA receptor subunits in neurosteroid modulation and spontaneous channel activity. Neurosci Lett 473:242–247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baulieu EE (1997) Neurosteroids: of the nervous system, by the nervous system, for the nervous system. Recent Prog Horm Res 52:1–32

    CAS  PubMed  Google Scholar 

  • Baulieu EE, Robel P, Schumacher M (2001) Neurosteroids: beginning of the story. Int Rev Neurobiol 46:1–32

    CAS  PubMed  Google Scholar 

  • Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6(7):565–575

    CAS  PubMed  Google Scholar 

  • Bibb JA, Mayford MR, Tsien JZ, Alberini CM (2010) Cognition enhancement strategies. J Neurosci 30:14987–14992

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bicikova M, Hill M, Ripova D, Mohr P, Hampl R (2013) Determination of steroid metabolome as a possible tool for laboratory diagnosis of schizophrenia. J Steroid Biochem Mol Biol 133:77–83

    CAS  PubMed  Google Scholar 

  • Brown RC, Cascio C, Papadopoulos V (2000) Pathways of neurosteroid biosynthesis in cell lines from human brain: regulation of dehydroepiandrosterone formation by oxidative stress and beta-amyloid peptide. J Neurochem 74:847–859

    CAS  PubMed  Google Scholar 

  • Buchanan RW, Javitt DC, Marder SR, Schooler NR, Gold JM, McMahon RP, Heresco-Levy U, Carpenter WT (2007) The cognitive and negative symptoms in schizophrenia trial (CONSIST): the efficacy of glutamatergic agents for negative symptoms and cognitive impairments. Am J Psychiatry 164:1593–1602

    PubMed  Google Scholar 

  • Budziszewska B, Siwanowicz J, Leśkiewicz M, Jaworska-Feil L, Lasoń W (1998) Protective effects of neurosteroids against NMDA-induced seizures and lethality in mice. Eur Neuropsychopharmacol 8:7–12

    CAS  PubMed  Google Scholar 

  • Butterfield DA, Pocernich CB (2003) The glutamatergic system and Alzheimer's disease: therapeutic implications. CNS Drugs 17:641–652

    CAS  PubMed  Google Scholar 

  • Cameron K, Bartle E, Roark R, Fanelli D, Pham M, Pollard B et al (2012) Neurosteroid binding to the amino terminal and glutamate binding domains of ionotropic glutamate receptors. Steroids 77:774–779

    CAS  PubMed  Google Scholar 

  • Caruso D, Pesaresi M, Abbiati F, Calabrese D, Giatti S, Garcia-Segura LM et al (2013) Comparison of plasma and cerebrospinal fluid levels of neuroactive steroids with their brain, spinal cord and peripheral nerve levels in male and female rats. Psychoneuroendocrinology 38:2278–2290

    CAS  PubMed  Google Scholar 

  • Cauli O, González-Usano A, Agustí A, Felipo V. (2011) Differential modulation of the glutamate-nitric oxide-cyclic GMP pathway by distinct neurosteroids in cerebellum in vivo. Neuroscience 190:27–36

  • Chen L, Miyamoto Y, Furuya K, Mori N, Sokabe M (2007) PREGS induces LTP in the hippocampal dentate gyrus of adult rats via the tyrosine phosphorylation of NR2B coupled to ERK/CREB [corrected] signaling. J Neurophysiol 98:1538–1548

    CAS  PubMed  Google Scholar 

  • Chen L, Cai W, Chen L, Zhou R, Furuya K, Sokabe M (2009) Modulatory metaplasticity induced by pregnenolone sulfate in the rat hippocampus: a leftward shift in LTP/LTD-frequency curve. Hippocampus 20:499–512

    Google Scholar 

  • Chisari M, Wu K, Zorumski CF, Mennerick S (2011) Hydrophobic anions potently and uncompetitively antagonize GABA(A) receptor function in the absence of a conventional binding site. Br J Pharmacol 164:667–680

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ciurtin C, Majeed Y, Naylor J, Sukumar P, English AA, Emery P et al (2010) TRPM3 channel stimulated by pregnenolone sulphate in synovial fibroblasts and negatively coupled to hyaluronan. BMC Musculoskelet Disord 11:111

    PubMed Central  PubMed  Google Scholar 

  • Clark BJ, Wells J, King SR, Stocco DM (1994) The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem 269:28314–28322

    CAS  PubMed  Google Scholar 

  • Collingridge GL, Volianskis A, Bannister N, France G, Hanna L, Mercier M et al (2013) The NMDA receptor as a target for cognitive enhancement. Neuropharmacology 64:13–26

    CAS  PubMed  Google Scholar 

  • Corpéchot C, Synguelakis M, Talha S, Axelson M, Sjövall J, Vihko R et al (1983) Pregnenolone and its sulfate ester in the rat brain. Brain Res 270:119–125

    PubMed  Google Scholar 

  • Crawley JN, Glowa JR, Majewska MD, Paul SM (1986) Anxiolytic activity of an endogenous adrenal steroid. Brain Res 398:382–385

    CAS  PubMed  Google Scholar 

  • Darbra S, Pallarès M (2011) Interaction between early postnatal neurosteroid manipulations and adult infusion of neurosteroids into CA1 hippocampal region on the open field behaviour. Behav Brain Res 216:705–711

    CAS  PubMed  Google Scholar 

  • Darbra S, Mòdol L, Pallarès M (2012) Allopregnanolone infused into the dorsal (CA1) hippocampus increases prepulse inhibition of startle response in Wistar rats. Psychoneuroendocrinology 37:581–585

    CAS  PubMed  Google Scholar 

  • Dhir A, Kulkarni S (2008) Involvement of sigma (sigma1) receptors in modulating the anti-depressant effect of neurosteroids (dehydroepiandrosterone or pregnenolone) in mouse tail-suspension test. J Psychopharmacol 22:691–696

    CAS  PubMed  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    CAS  PubMed  Google Scholar 

  • Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, et al. (2009) Neurosteroid biosynthesis: Enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 30(3):259--301

  • Ebner MJ, Corol DI, Havlíková H, Honour JW, Fry JP (2006) Identification of neuroactive steroids and their precursors and metabolites in adult male rat brain. Endocrinology 147:179–190

    CAS  PubMed  Google Scholar 

  • Elfverson M, Linde A-M, Le Grevès P, Zhou Q, Nyberg F, Johansson T (2008) Neurosteroids allosterically modulate the ion pore of the NMDA receptor consisting of NR1/NR2B but not NR1/NR2A. Biochem Biophys Res Commun 372:305–308

    CAS  PubMed  Google Scholar 

  • Elfverson M, Johansson T, Zhou Q, Le Grevès P, Nyberg F (2011) Chronic administration of the anabolic androgenic steroid nandrolone alters neurosteroid action at the sigma-1 receptor but not at the sigma-2 or NMDA receptors. Neuropharmacology 61:1172–1181

    CAS  PubMed  Google Scholar 

  • Espallergues J, Givalois L, Temsamani J, Laruelle C, Maurice T (2009) The 3beta-hydroxysteroid dehydrogenase inhibitor trilostane shows antidepressant properties in mice. Psychoneuroendocrinology 34:644–659

    CAS  PubMed  Google Scholar 

  • Falany CN, He D, Dumas N, Frost AR, Falany JL (2006) Human cytosolic sulfotransferase 2B1: isoform expression, tissue specificity and subcellular localization. J Steroid Biochem Mol Biol 102:214–221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fang F, Christian WV, Gorman SG, Cui M, Huang J, Tieu K et al (2010) Neurosteroid transport by the organic solute transporter OSTα-OSTβ. J Neurochem 115:220–233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flood JF, Morley JE, Roberts E (1995) Pregnenolone sulfate enhances post-training memory processes when injected in very low doses into limbic system structures: the amygdala is by far the most sensitive. Proc Natl Acad Sci U S A 92:10806–10810

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fonfria E, Murdock PR, Cusdin RS, Benham CD, Kelsell RE, McNulty S (2006) Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 26:159–178

    CAS  PubMed  Google Scholar 

  • Furukawa A, Miyatake A, Ohnishi T, Ichikawa Y (1998) Steroidogenic acute regulatory protein (StAR) transcripts constitutively expressed in the adult rat central nervous system: colocalization of StAR, cytochrome P-450SCC (CYP XIA1), and 3beta-hydroxysteroid dehydrogenase in the rat brain. J Neurochem 71:2231–2238

    CAS  PubMed  Google Scholar 

  • Gaspar PA, Bustamante ML, Silva H, Aboitiz F (2009) Molecular mechanisms underlying glutamatergic dysfunction in schizophrenia: therapeutic implications. J Neurochem 111:891–900

    CAS  PubMed  Google Scholar 

  • Gibbs TT, Russek SJ, Farb DH (2006) Sulfated steroids as endogenous neuromodulators. Pharmacol Biochem Behav 84:555–567

    CAS  PubMed  Google Scholar 

  • Girdler SS, Lindgren M, Porcu P, Rubinow DR, Johnson JL, Morrow AL (2012) A history of depression in women is associated with an altered GABAergic neuroactive steroid profile. Psychoneuroendocrinology 37:543–553

    CAS  PubMed Central  PubMed  Google Scholar 

  • González-Usano A, Cauli O, Agustí A, Felipo V. (2013) Hyperammonemia alters the modulation by different neurosteroids of the glutamate-nitric oxide-cyclic GMP pathway through NMDA- GABAA - or sigma receptors in cerebellum in vivo. J Neurochem. 125:133–143

  • Gonzalez-Usano A, Cauli O, Agusti A, Felipo V. (2014) Pregnenolone sulfate restores the glutamate-nitric-oxide-cGMP pathway and extracellular GABA in cerebellum and learning and motor coordination in hyperammonemic rats. ACS Chem Neurosci. 5:100–105

  • Grassi S, Frondaroli A, Dieni C, Scarduzio M, Pettorossi VE (2009) Long-term potentiation in the rat medial vestibular nuclei depends on locally synthesized 17beta-estradiol. J Neurosci 29:10779–10783

    CAS  PubMed  Google Scholar 

  • Grimwood S, Richards P, Murray F, Harrison N, Wingrove PB, Hutson PH (2000) Characterisation of N-methyl-D-aspartate receptor-specific [3H]ifenprodil binding to recombinant human NR1a/NR2B receptors compared with native receptors in rodent brain membranes. J Neurochem 75:2455–2463

    CAS  PubMed  Google Scholar 

  • Harrison NL, Majewska MD, Harrington JW, Barker JL (1987) Structure-activity relationships for steroid interaction with the gamma-aminobutyric acidA receptor complex. J Pharmacol Exp Ther 241:346–353

    CAS  PubMed  Google Scholar 

  • Harteneck C (2013) Pregnenolone sulfate: from steroid metabolite to TRP channel ligand. Molecules 18:12012–12028

    CAS  PubMed  Google Scholar 

  • Higashi T, Sugitani H, Yagi T, Shimada K (2003) Studies on neurosteroids XVI. Levels of pregnenolone sulfate in rat brains determined by enzyme-linked immunosorbent assay not requiring solvolysis. Biol Pharm Bull 26:709–711

    CAS  PubMed  Google Scholar 

  • Hill M, Vrbíková J, Zárubová J, Vceláková H, Dusková M, Kancheva R et al (2010) Sulphates of 3beta-hydroxy-5-ene steroids in women with epilepsy. Prague Med Rep 111:111–126

    CAS  PubMed  Google Scholar 

  • Hoffmann A, Grimm C, Kraft R, Goldbaum O, Wrede A, Nolte C et al (2010) TRPM3 is expressed in sphingosine-responsive myelinating oligodendrocytes. J Neurochem 114:654–665

    CAS  PubMed  Google Scholar 

  • Hong JS, Cho JH, Choi IS, Lee MG, Jang IS (2013) Pregnenolone sulfate modulates glycinergic transmission in rat medullary dorsal horn neurons. Eur J Pharmacol. 712:30–38

  • Horak M, Vlcek K, Chodounska H, Vyklický L (2006) Subtype-dependence of N-methyl-D-aspartate receptor modulation by pregnenolone sulfate. Neuroscience 137:93–102

    CAS  PubMed  Google Scholar 

  • Horishita T, Ueno S, Yanagihara N, Sudo Y, Uezono Y, Okura D et al (2012) Inhibition by pregnenolone sulphate, a metabolite of the neurosteroid pregnenolone, of voltage-gated sodium channels expressed in Xenopus oocytes. J Pharmacol Sci 120:54–58

    CAS  PubMed  Google Scholar 

  • Jang MK, Mierke DF, Russek SJ, Farb DH (2004) A steroid modulatory domain on NR2B controls N-methyl-D-aspartate receptor proton sensitivity. Proc Natl Acad Sci U S A 101:8198–8203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jäntti SE, Tammimäki A, Raattamaa H, Piepponen P, Kostiainen R, Ketola RA (2010) Determination of steroids and their intact glucuronide conjugates in mouse brain by capillary liquid chromatography-tandem mass spectrometry. Anal Chem 82:3168–3175

    PubMed  Google Scholar 

  • Jo DH, Abdallah MA, Young J, Baulieu EE, Robel P (1989) Pregnenolone, dehydrepiandrosterone, and their sulfate and fatty acid esters in the rat brain. Steroids 54:287–297

    CAS  PubMed  Google Scholar 

  • Johansson T, Frändberg PA, Nyberg F, Le Grevès P (2005) Low concentrations of neuroactive steroids alter kinetics of [3H]ifenprodil binding to the NMDA receptor in rat frontal cortex. Br J Pharmacol 146:894–902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johansson T, Frändberg P-A, Nyberg F, Le Grevès P (2008) Molecular mechanisms for nanomolar concentrations of neurosteroids at NR1/NR2B receptors. J Pharmacol Exp Ther 324:759–768

    CAS  PubMed  Google Scholar 

  • Johansson T, Elfverson M, Zhou Q, Nyberg F (2010) Allosteric modulation of the NMDA receptor by neurosteroids in rat brain and the impact of long term morphine administration. Biochem Biophys Res Commun 401:504–508

    CAS  PubMed  Google Scholar 

  • Kancheva R, Hill M, Novák Z, Chrastina J, Velíková M, Kancheva L et al (2010) Peripheral neuroactive steroids may be as good as the steroids in the cerebrospinal fluid for the diagnostics of CNS disturbances. J Steroid Biochem Mol Biol 119:35–44

    CAS  PubMed  Google Scholar 

  • Kawata M, Nishi M, Matsuda K, Sakamoto H, Kaku N, Masugi-Tokita M et al (2008) Steroid receptor signalling in the brain—lessons learned from molecular imaging. J Neuroendocrinol 20:673–676

    CAS  PubMed  Google Scholar 

  • Khisti RT, Chopde CT, Jain SP (2000) Antidepressant-like effect of the neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one in mice forced swim test. Pharmacol Biochem Behav 67:137–143

    CAS  PubMed  Google Scholar 

  • Kimoto T, Tsurugizawa T, Ohta Y, Makino J, Tamura Ho Hojo Y et al (2001) Neurosteroid synthesis by cytochrome p450-containing systems localized in the rat brain hippocampal neurons: N-methyl-D-aspartate and calcium-dependent synthesis. Endocrinology 142:3578–3589

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Washiyama K, Ikeda K (2009) Pregnenolone sulfate potentiates the inwardly rectifying K channel Kir2.3. PLoS One 4:e6311

    PubMed Central  PubMed  Google Scholar 

  • Kohjitani A, Fuda H, Hanyu O, Strott CA (2006) Cloning, characterization and tissue expression of rat SULT2B1a and SULT2B1b steroid/sterol sulfotransferase isoforms: divergence of the rat SULT2B1 gene structure from orthologous human and mouse genes. Gene 367:66–73

    CAS  PubMed  Google Scholar 

  • Kohjitani A, Fuda H, Hanyu O, Strott CA (2008) Regulation of SULT2B1a (pregnenolone sulfotransferase) expression in rat C6 glioma cells: relevance of AMPA receptor-mediated NO signaling. Neurosci Lett 430:75–80

    CAS  PubMed  Google Scholar 

  • Korinek M, Kapras V, Vyklicky V, Adamusova E, Borovska J, Vales K, Stuchlik A, Horak M, Chodounska H, Vyklicky L (2011) Neurosteroid modulation of N-methyl-d-aspartate receptors: molecular mechanism and behavioral effects. Steroids 76:1409–1418

    CAS  PubMed  Google Scholar 

  • Kostakis E, Jang MK, Russek SJ, Gibbs TT, Farb DH (2011) A steroid modulatory domain in NR2A collaborates with NR1 exon-5 to control NMDAR modulation by pregnenolone sulfate and protons. J Neurochem 119:486–496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kostakis E, Smith C, Jang MK, Martin SC, Richards KG, Russek SJ et al (2013) The neuroactive steroid pregnenolone sulfate stimulates trafficking of functional N-methyl-D-aspartate receptors to the cell surface via a noncanonical G-protein and Ca2+-dependent mechanism. Mol Pharmacol 84:261–274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kreinin A, Bawakny N, Ritsner MS (2014) Adjunctive pregnenolone ameliorates the cognitive deficits in recent-onset schizophrenia. Clin Schizophr Relat Psychoses 1–31

  • Lanthier A, Patwardhan VV (1986) Sex steroids and 5-en-3 beta-hydroxysteroids in specific regions of the human brain and cranial nerves. J Steroid Biochem 25:445–449

    CAS  PubMed  Google Scholar 

  • Lee YS, Silva AJ (2009) The molecular and cellular biology of enhanced cognition. Nat Rev Neurosci 10:126–140

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee N, Chen J, Sun L, Wu S, Gray KR, Rich A et al (2003) Expression and characterization of human transient receptor potential melastatin 3 (hTRPM3). J Biol Chem 278:20890–20897

    CAS  PubMed  Google Scholar 

  • Lee KH, Cho JH, Choi IS, Park HM, Lee MG, Choi BJ et al (2010) Pregnenolone sulfate enhances spontaneous glutamate release by inducing presynaptic Ca2+-induced Ca2+ release. Neuroscience 171:106–116

    CAS  PubMed  Google Scholar 

  • Liere P, Pianos A, Eychenne B, Cambourg A, Liu S, Griffiths W, Schumacher M, Sjövall J, Baulieu EE (2004) Novel lipoidal derivatives of pregnenolone and dehydroepiandrosterone and absence of their sulfated counterparts in rodent brain. J Lipid Res 45:2287–2302

    CAS  PubMed  Google Scholar 

  • Liere P, Pianos A, Eychenne B, Cambourg A, Bodin K, Griffiths W et al (2009) Analysis of pregnenolone and dehydroepiandrosterone in rodent brain: cholesterol autoxidation is the key. J Lipid Res 50:2430–2444

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu S, Sjövall J, Griffiths WJ (2003) Neurosteroids in rat brain: extraction, isolation, and analysis by nanoscale liquid chromatography-electrospray mass spectrometry. Anal Chem 75:5835–5846

    CAS  PubMed  Google Scholar 

  • Liyou NE, Buller KM, Tresillian MJ, Elvin CM, Scott HL, Dodd PR et al (2003) Localization of a brain sulfotransferase, SULT4A1, in the human and rat brain: an immunohistochemical study. J Histochem Cytochem 51:1655–1664

    CAS  PubMed  Google Scholar 

  • Loomis WF, Behrens MM, Williams ME, Anjard C (2010) Pregnenolone sulfate and cortisol induce secretion of acyl-CoA-binding protein and its conversion into endozepines from astrocytes. J Biol Chem 285:21359–21365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Majewska MD, Mienville JM, Viccini S (1988) Neurosteroid pregnenolone sulfate antagonizes electrophysiological responses to GABA in neurons. Neurosci Lett 90:279–284

    CAS  PubMed  Google Scholar 

  • Malayev A, Gibbs TT, Farb DH (2002) Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids. Br J Pharmacol 135:901–909

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mameli M, Carta M, Partridge LD, Valenzuela CF (2005) Neurosteroid-Induced plasticity of immature synapses via retrograde modulation of presynaptic NMDA receptors. J Neurosci 25:2285–2294

    CAS  PubMed  Google Scholar 

  • Marques AH, Silverman MN, Sternberg EM (2009) Glucocorticoid dysregulations and their clinical correlates. From receptors to therapeutics. Ann N Y Acad Sci 1179:1–18

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martín-García E, Pallarés M (2008) A post-training intrahippocampal anxiogenic dose of the neurosteroid pregnenolone sulfate impairs passive avoidance retention. Exp Brain Res 191:123–131

    PubMed  Google Scholar 

  • Martín-García E, Darbra S, Pallarés M (2008) Neonatal finasteride induces anxiogenic-like profile and deteriorates passive avoidance in adulthood after intrahippocampal neurosteroid administration. Neuroscience 154:1497–1505

    PubMed  Google Scholar 

  • Marx CE, Trost WT, Shampine LJ, Stevens RD, Hulette CM, Steffens DC et al (2006) The neurosteroid allopregnanolone is reduced in prefrontal cortex in Alzheimer's disease. Biol Psychiatry 60(12):1287–1294

    CAS  PubMed  Google Scholar 

  • Marx CE, Keefe RS, Buchanan RW, Hamer RM, Kilts JD, Bradford DW, Strauss JL, Naylor JC, Payne VM, Lieberman JA, Savitz AJ, Leimone LA, Dunn L, Porcu P, Morrow AL, Shampine LJ (2009) Proof-of-concept trial with the neurosteroid pregnenolone targeting cognitive and negative symptoms in schizophrenia. Neuropsychopharmacology 34:1885–1903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marx CE, Bradford DW, Hamer RM, Naylor JC, Allen TB, Lieberman JA, Strauss JL, Kilts JD (2011) Pregnenolone as a novel therapeutic candidate in schizophrenia: emerging preclinical and clinical evidence. Neuroscience 191:78–90

    CAS  PubMed  Google Scholar 

  • Mellon SH, Deschepper CF (1993) Neurosteroid biosynthesis: genes for adrenal steroidogenic enzymes are expressed in the brain. Brain Res 629:283–292

    CAS  PubMed  Google Scholar 

  • Mellon SH, Griffin LD, Compagnone NA (2001) Biosynthesis and action of neurosteroids. Brain Res Brain Res Rev 37:3–12

    CAS  PubMed  Google Scholar 

  • Meloche CA, Falany CN (2001) Expression and characterization of the human 3 beta-hydroxysteroid sulfotransferases (SULT2B1a and SULT2B1b). J Steroid Biochem Mol Biol 77:261–269

    CAS  PubMed  Google Scholar 

  • Meloun M, Hill M, Vceláková-Havlíková H (2009) Minimizing the effects of multicollinearity in the polynomial regression of age relationships and sex differences in serum levels of pregnenolone sulfate in healthy subjects. Clin Chem Lab Med 47:464–470

    CAS  PubMed  Google Scholar 

  • Mienville JM, Vicini S (1989) Pregnenolone sulfate antagonizes GABAA receptor-mediated currents via a reduction of channel opening frequency. Brain Res 489:190–194

    CAS  PubMed  Google Scholar 

  • Milev P, Ho BC, Arndt S, Andreasen NC (2005) Predictive values of neurocognition and negative symptoms on functional outcome in schizophrenia: a longitudinal first-episode study with 7-year follow-up. Am J Psychiatry 162:495–506

    PubMed  Google Scholar 

  • Mòdol L, Darbra S, Pallarès M (2011) Neurosteroids infusion into the CA1 hippocampal region on exploration, anxiety-like behaviour and aversive learning. Behav Brain Res 222:223–229

    PubMed  Google Scholar 

  • Mtchedlishvili Z, Kapur J (2003) A presynaptic action of the neurosteroid pregnenolone sulfate on GABAergic synaptic transmission. Mol Pharmacol 64:857–864

    CAS  PubMed  Google Scholar 

  • Müller I, Rössler OG, Thiel G (2011) Pregnenolone sulfate activates basic region leucine zipper transcription factors in insulinoma cells: role of voltage-gated Ca2+ channels and transient receptor potential melastatin 3 channels. Mol Pharmacol 80:1179–1189

    PubMed  Google Scholar 

  • Nanfaro F, Cabrera R, Bazzocchini V, Laconi M, Yunes R (2010) Pregnenolone sulfate infused in lateral septum of male rats impairs novel object recognition memory. Pharmacol Rep 62:265–272

    CAS  PubMed  Google Scholar 

  • Naylor J, Li J, Milligan CJ, Zeng F, Sukumar P, Hou B et al (2010a) Pregnenolone sulphate- and cholesterol-regulated TRPM3 channels coupled to vascular smooth muscle secretion and contraction. Circ Res 106:1507–1515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naylor JC, Kilts JD, Hulette CM, Steffens DC, Blazer DG, Ervin JF et al (2010b) Allopregnanolone levels are reduced in temporal cortex in patients with Alzheimer’s disease compared to cognitively intact control subjects. Biochim Biophys Acta 1801(8):951–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Osuji IJ, Vera-Bolaños E, Carmody TJ, Brown ES (2010) Pregnenolone for cognition and mood in dual diagnosis patients. Psychiatry Res 178:309–312

    CAS  PubMed  Google Scholar 

  • Park-Chung M, Wu FS, Purdy RH, Malayev AA, Gibbs TT, Farb DH (1997) Distinct sites for inverse modulation of N-methyl-D-aspartate receptors by sulfated steroids. Mol Pharmacol 52:1113–1123

    CAS  PubMed  Google Scholar 

  • Park-Chung M, Malayev A, Purdy RH, Gibbs TT, Farb DH (1999) Sulfated and unsulfated steroids modulate gamma-aminobutyric acidA receptor function through distinct sites. Brain Res 830:72–87

    CAS  PubMed  Google Scholar 

  • Paul SM, Doherty JJ, Robichaud AJ, Belfort GM, Chow BY, Hammond RS, Crawford DC, Linsenbardt AJ, Shu HJ, Izumi Y, Mennerick SJ, Zorumski CF (2013) The major brain cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. J Neurosci 33:17290–17300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petit GH, Tobin C, Krishnan K, Moricard Y, Covey DF, Rondi-Reig L et al (2011) Pregnenolone sulfate and its enantiomer: differential modulation of memory in a spatial discrimination task using forebrain NMDA receptor deficient mice. Eur Neuropsychopharmacol 21:211–215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petrovic M, Sedlacek M, Cais O, Horak M, Chodounska H, Vyklicky L (2009) Pregnenolone sulfate modulation of N-methyl-D-aspartate receptors is phosphorylation dependent. Neuroscience 160:616–628

    CAS  PubMed  Google Scholar 

  • Pieribone VA, Tsai J, Soufflet C, Rey E, Shaw K, Giller E et al (2007) Clinical evaluation of ganaxolone in pediatric and adolescent patients with refractory epilepsy. Epilepsia 48:1870–1874

    CAS  PubMed  Google Scholar 

  • Pilc A, Wierońska JM, Skolnick P (2013) Glutamate-based antidepressants: preclinical psychopharmacology. Biol Psychiatry 73:1125–1132

    CAS  PubMed  Google Scholar 

  • Plescia F, Sardo P, Rizzo V, Cacace S, Marino RA, Brancato A et al (2014) Pregnenolone sulphate enhances spatial orientation and object discrimination in adult male rats: evidence from a behavioural and electrophysiological study. Behav Brain Res 258:193–201

    CAS  PubMed  Google Scholar 

  • Porcu P, O'Buckley TK, Leslie Morrow A, Adinoff B (2008) Differential hypothalamic-pituitary-adrenal activation of the neuroactive steroids pregnenolone sulfate and deoxycorticosterone in healthy controls and alcohol-dependent subjects. Psychoneuroendocrinology 33:214–226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Porcu P, O'Buckley TK, Alward SE, Marx CE, Shampine LJ, Girdler SS, Morrow AL (2009) Simultaneous quantification of GABAergic 3alpha,5alpha/3alpha,5beta neuroactive steroids in human and rat serum. Steroids 74:463–473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy DS (2010) Neurosteroids: endogenous role in the human brain and therapeutic potentials. Prog Brain Res 186:113–137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ritsner MS, Gibel A, Shleifer T, Boguslavsky I, Zayed A, Maayan R et al (2010) Pregnenolone and dehydroepiandrosterone as an adjunctive treatment in schizophrenia and schizoaffective disorder: an 8-week, double-blind, randomized, controlled, 2-center, parallel-group trial. J Clin Psychiatry 71:1351–1362

    CAS  PubMed  Google Scholar 

  • Ritsner MS, Bawakny H, Kreinin A (2014) Pregnenolone treatment reduces severity of negative symptoms in recent-onset schizophrenia: an 8-week, double-blind, randomized add-on two-center trial. Psychiatry Clin Neurosci

  • Rustichelli C, Pinetti D, Lucchi C, Ravazzini F, Puia G (2013) Simultaneous determination of pregnenolone sulphate, dehydroepiandrosterone and allopregnanolone in rat brain areas by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 930:62–69

    CAS  Google Scholar 

  • Sabeti J, Gruol DL (2008) Emergence of NMDAR-independent long-term potentiation at hippocampal CA1 synapses following early adolescent exposure to chronic intermittent ethanol: role for sigma-receptors. Hippocampus 18:148–168

    CAS  PubMed  Google Scholar 

  • Sabeti J, Nelson TE, Purdy RH, Gruol DL (2007) Steroid pregnenolone sulfate enhances NMDA-receptor-independent long-term potentiation at hippocampal CA1 synapses: role for L-type calcium channels and sigma-receptors. Hippocampus 17:349–369

    CAS  PubMed  Google Scholar 

  • Sadri-Vakili G, Janis GC, Pierce RC, Gibbs TT, Farb DH (2008) Nanomolar concentrations of pregnenolone sulfate enhance striatal dopamine overflow in vivo. J Pharmacol Exp Ther 327:840–845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schiess AR, Scullin CS, Partridge LD (2006) Neurosteroid-Induced enhancement of short-term facilitation involves a component downstream from presynaptic calcium in hippocampal slices. J Physiol 576:833–847

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schumacher M, Liere P, Akwa Y, Rajkowski K, Griffiths W, Bodin K, Sjövall J, Baulieu EE (2008) Pregnenolone sulfate in the brain: a controversial neurosteroid. Neurochem Int 52:522–540

    CAS  PubMed  Google Scholar 

  • Scullin CS, Partridge LD (2012) Modulation by pregnenolone sulfate of filtering properties in the hippocampal trisynaptic circuit. Hippocampus 22:2184–2198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sieghart W (1995) Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev 47:181–234

    CAS  PubMed  Google Scholar 

  • Sliwinski A, Monnet FP, Schumacher M, Morin-Surun MP (2004) Pregnenolone sulfate enhances long-term potentiation in CA1 in rat hippocampus slices through the modulation of N-methyl-D-aspartate receptors. J Neurosci Res 78:691–701

    CAS  PubMed  Google Scholar 

  • Smith, CS (2014) Non-canonical cell signaling actions of pregnenolone sulfate, a neurosteroid that increases intracellular calcium, activates CREB phosphorylation and stimulates trafficking of NMDA receptors to the surface of neurons. Dissertation, Boston University School of Medicine

  • Steckelbroeck S, Nassen A, Ugele B, Ludwig M, Watzka M, Reissinger A et al (2004) Steroid sulfatase (STS) expression in the human temporal lobe: enzyme activity, MRNA expression and immunohistochemistry study. J Neurochem 89:403–417

    CAS  PubMed  Google Scholar 

  • Stocco DM (2001) StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol 63:193–213

    CAS  PubMed  Google Scholar 

  • Ströhle A, Romeo E, di Michele F, Pasini A, Yassouridis A, Holsboer F et al (2002) GABA(A) receptor-modulating neuroactive steroid composition in patients with panic disorder before and during paroxetine treatment. Am J Psychiatry 159:145–147

    PubMed  Google Scholar 

  • Sun X, Cheng F, Meng B, Yang B, Song W, Yuan H (2012) Pregnenolone sulfate decreases intraocular pressure and changes expression of sigma receptor in a model of chronic ocular hypertension. Mol Biol Rep 39:6607–6614

    CAS  PubMed  Google Scholar 

  • Tanaka M, Sokabe M (2012) Continuous de novo synthesis of neurosteroids is required for normal synaptic transmission and plasticity in the dentate gyrus of the rat hippocampus. Neuropharmacology 62:2373–2387

    CAS  PubMed  Google Scholar 

  • Uzunov DP, Cooper TB, Costa E, Guidotti A (1996) Fluoxetine-elicited changes in brain neurosteroid content measured by negative ion mass fragmentography. Proc Natl Acad Sci U S A 93:12599–12604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valenzuela CF, Partridge LD, Mameli M, Meyer DA (2008) Modulation of glutamatergic transmission by sulfated steroids: role in fetal alcohol spectrum disorder. Brain Res Rev 57:506–519

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vallée M, Vitiello S, Bellocchio L, Hébert-Chatelain E, Monlezun S, Martin-Garcia E et al (2014) Pregnenolone can protect the brain from cannabis intoxication. Science 343:94–98

    PubMed Central  PubMed  Google Scholar 

  • Wagner TF, Loch S, Lambert S, Straub I, Mannebach S, Mathar I et al (2008) Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat Cell Biol 10:1421–1430

    CAS  PubMed  Google Scholar 

  • Wagner TF, Drews A, Loch S, Mohr F, Philipp SE, Lambert S et al (2010) TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Pflugers Arch 460:755–765

    CAS  PubMed  Google Scholar 

  • Wang MD, Wahlström G, Bäckström T (1997) The regional brain distribution of the neurosteroids pregnenolone and pregnenolone sulfate following intravenous infusion. J Steroid Biochem Mol Biol 62:299–306

    CAS  PubMed  Google Scholar 

  • Wang MD, Borra VB, Strömberg J, Lundgren P, Haage D, Bäckström T (2008a) Neurosteroids 3beta, 20 (R/S)-pregnandiols decrease offset rate of the GABA-site activation at the recombinant GABA A receptor. Eur J Pharmacol 586:67–73

    CAS  PubMed  Google Scholar 

  • Wang ZM, Qi YJ, Wu PY, Zhu Y, Dong YL, Cheng ZX, Zhu YH, Dong Y, Ma L, Zheng P (2008b) Neuroactive steroid pregnenolone sulphate inhibits long-term potentiation via activation of alpha2-adrenoreceptors at excitatory synapses in rat medial prefrontal cortex. Int J Neuropsychopharmacol 11:611–624

    CAS  PubMed  Google Scholar 

  • Watzka M, Bidlingmaier F, Schramm J, Klingmüller D, Stoffel-Wagner B (1999) Sex- and age-specific differences in human brain CYP11A1 mRNA expression. J Neuroendocrinol 11:901–905

    CAS  PubMed  Google Scholar 

  • Weaver CE, Land MB, Purdy RH, Richards KG, Gibbs TT, Farb DH (2000) Geometry and charge determine pharmacological effects of steroids on n-methyl-d-aspartate receptor-induced ca(2+) accumulation and cell death. J Pharmacol Exp Ther 293(3):747–754

    CAS  PubMed  Google Scholar 

  • Weill-Engerer S, David JP, Sazdovitch V, Liere P, Eychenne B, Pianos A et al (2002) Neurosteroid quantification in human brain regions: comparison between Alzheimer's and nondemented patients. J Clin Endocrinol Metab 87:5138–5143

    CAS  PubMed  Google Scholar 

  • Whittaker MT, Gibbs TT, Farb DH (2008) Pregnenolone sulfate induces NMDA receptor dependent release of dopamine from synaptic terminals in the striatum. J Neurochem 107:510–521

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams K (1993) Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 44:851–859

    CAS  PubMed  Google Scholar 

  • Wolkowitz OM, Reus VI, Keebler A, Nelson N, Friedland M, Brizendine L et al (1999) Double-blind treatment of major depression with dehydroepiandrosterone. Am J Psychiatry 156:646–649

    CAS  PubMed  Google Scholar 

  • Wong P, Chang CC, Marx CE, Caron MG, Wetsel WC, Zhang X (2012) Pregnenolone rescues schizophrenia-like behavior in dopamine transporter knockout mice. PLoS One 7:e51455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wood CE, Gridley KE, Keller-Wood M (2003) Biological activity of 17beta-estradiol-3-sulfate in ovine fetal plasma and uptake in fetal brain. Endocrinology 144:599–604

    CAS  PubMed  Google Scholar 

  • Wu FS, Gibbs TT, Farb DH (1991) Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol Pharmacol 40:333–336

    CAS  PubMed  Google Scholar 

  • Xu B, Yang R, Chang F, Chen L, Xie G, Sokabe M, Chen L (2012) Neurosteroid PREGS protects neurite growth and survival of newborn neurons in the hippocampal dentate gyrus of APPswe/PS1dE9 mice. Curr Alzheimer Res 9:361–372

    CAS  PubMed  Google Scholar 

  • Yaghoubi N, Malayev A, Russek SJ, Gibbs TT, Farb DH (1998) Neurosteroid modulation of recombinant ionotropic glutamate receptors. Brain Res 803(1–2):153–60

  • Yang R, Zhou R, Chen L, Cai W, Tomimoto H, Sokabe M et al (2010) Pregnenolone sulfate enhances survival of adult-generated hippocampal granule cells via sustained presynaptic potentiation. Neuropharmacology 60:529–541

    PubMed  Google Scholar 

  • Yang R, Chen L, Wang H, Xu B, Tomimoto H, Chen L (2012) Anti-amnesic effect of neurosteroid PREGS in Aβ25-35-injected mice through σ1 receptor- and α7nAChR-mediated neuroprotection. Neuropharmacology 63:1042–1050

    CAS  PubMed  Google Scholar 

  • Zamudio-Bulcock PA, Valenzuela CF (2011) Pregnenolone sulfate increases glutamate release at neonatal climbing fiber-to-purkinje cell synapses. Neuroscience 175:24–36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zamudio-Bulcock PA, Everett J, Harteneck C, Valenzuela CF (2011) Activation of steroid-sensitive TRPM3 channels potentiates glutamatergic transmission at cerebellar purkinje neurons from developing rats. J Neurochem 119:474–485

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng P (2009) Neuroactive steroid regulation of neurotransmitter release in the CNS: action, mechanism and possible significance. Prog Neurobiol 89:134–152

    CAS  PubMed  Google Scholar 

  • Zimmerberg B, Drucker PC, Weider JM (1995) Differential behavioral effects of the neuroactive steroid allopregnanolone on neonatal rats prenatally exposed to alcohol. Pharmacol Biochem Behav 51:463–468

    CAS  PubMed  Google Scholar 

  • Zorumski CF, Paul SM, Izumi Y, Covey DF, Mennerick S (2013) Neurosteroids, stress and depression: potential therapeutic opportunities. Neurosci Biobehav Rev 37:109–122

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the very helpful input from Shelley Russek, PhD. This work was supported in part by the National Institutes of Health, the National Institute of Mental Health [Grant R01MH049469], and the National Institutes of Health, National Institute of General Medical Sciences grants [T32GM008541] to D.H.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Farb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, C.C., Gibbs, T.T. & Farb, D.H. Pregnenolone sulfate as a modulator of synaptic plasticity. Psychopharmacology 231, 3537–3556 (2014). https://doi.org/10.1007/s00213-014-3643-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3643-x

Keywords

Navigation